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Key Idea:  
 
Introducing diversity into computers---even those running identical software---so that successful 
attacks on one computer do not necessarily work on others.  Diversity is one aspect of the kind of 
adaptive and robust methods used routinely in biological systems.  Other adaptations beyond 
diversity were developed under this effort in the same spirit of increasing the resilience of our 
computing infrastructure. 
 

Summary of results: 
 
1. We explored three potential diversity mechanisms: Dynamic translation of machine code (to 
defend against code-injection), randomizing the system-call interface (to defend against code-
injection attacks), and evolving diverse implementations of TCP resource management policies 
(to defend against Denial of Service (DoS) attacks).  Of these, we focused primarily on the first 
mechanism---dynamic translation.  Dynamic translation of machine code is used to achieve 
Randomized Instruction Set Emulation (RISE), which thwarts malicious code injection attacks 
 by making injected code appear random and thus illegal to the native processor. 
 
2. We developed a prototype implementation of machine code randomization, called RISE 
(randomized instruction set emulation).  RISE is available under GPL licensing from: 
http://www.cs.unm.edu/~gbarrant.  We tested RISE's performance at stopping attacks using  
the Core Impact testing software.  We conducted extensive experiments, both to test the 
effectiveness of RISE at stopping attacks and to test the safety of executing random sequences 
of instructions (during a code-injection attack, the attack code is effectively randomized and we 
wanted to know how quickly and with how much certainty such randomized code would fail). 
 
3. We also continued the development of a dynamic translation tool (SIND) to facilitate 
dynamic translation diversity on RISC platforms.  These results were reported in Trek Palmer's  
MS Thesis. 
 
4. We performed experimental validation and probabilistic analysis of RISE, for both RISC and 
CISC architectures, demonstrating and explaining the efficacy of the RISE approach.  RISE 
succeeds in converting a very high percentage of malicious code injection attacks into no more 
than just barely detectable denials of service.  In other words, its affect on a particular computer  
or network of computers was minimal. 
 
5. We also experimented with diversification of TCP resource management policies to prevent a 
form of resonance present in current networks.  Hosts implement TCP with uniform policies and 
parameters, even when the uniformity is not necessary for correctness.  A class of network Denial 
of Service attacks is able to drive such networks into pathological “resonance” modes in which the 
network throughput is degraded even in the absence of true load.  Diversification of TCP resource 
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management policies can reduce the likelihood that such resonance modes exist or can be 
discovered by the attacker.  We developed a prototype implementation which randomizes four  
TCP protocol parameters.  Evaluation of network performance uses trace-based simulation.  
This work is promising but not fully mature. 
 
6. Collaboration with Carnegie Mellon Univ. (CMU), Prof Mike Reiter.  We established 
collaboration with Mike Reiter of CMU that has led to a follow-on jointly funded research 
project extending the results obtained under this grant. 
 
7. Products: 
 
RISE prototype software described above. 
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Appendix A -  G. Barrantes, D. Ackley, S. Forrest, T. Palmer, D.  Stefnaovic, and D. Zovi,  
“Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks”,                   
ACM Conference on Computer and Communications Security (2004). 
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TISSEC (attachment #3 below). 
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Set Emulation” ACM Transactions on Information Systems Security (TISSEC), May 2004. 
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ABSTRACT
Binary code injection into an executing program is a common form
of attack. Most current defenses against this form of attack use a
‘guard all doors’ strategy, trying to block the avenues by which ex-
ecution can be diverted. We describe a complementary method of
protection, which disrupts foreign code execution regardless of how
the code is injected. A unique and private machine instruction set
for each executing program would make it difficult for an outsider
to design binary attack code against that program and impossible
to use the same binary attack code against multiple machines. As
a proof of concept, we describe a randomized instruction set em-
ulator (RISE), based on the open-source Valgrind x86-to-x86 bi-
nary translator. The prototype disrupts binary code injection attacks
against a program without requiring its recompilation, linking, or
access to source code. The paper describes the RISE implemen-
tation and its limitations, gives evidence demonstrating that RISE
defeats common attacks, considers how the dense x86 instruction
set affects the method, and discusses potential extensions of the
idea.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.3.4 [Prog-
ramming Languages]: Processors

General Terms
Security, Languages

Keywords
Automated Diversity, Security, Emulation, Language Randomiza-
tion, Obfuscation, Information Hiding
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1. INTRODUCTION
Standardized interfaces between software and hardware are a double-
edged sword. On the one hand, they lead to huge productivity im-
provements through independent development and optimization of
hardware and software. But, they also allow a single attack code
designed against an exploitable flaw to gain control of thousands
or millions of standardized systems. One approach to controlling
this form of attack is to ‘destandardize’ the protected system in an
externally unobservable way, so that an outside attacker either can-
not easily obtain the information needed to craft the attack or must
manually regenerate the attack once for each new attack instance.
Techniques that take this approach include obfuscation, informa-
tion hiding, and automated diversity.

In the case of binary code injection, many defense techniques
act to block known routes by which foreign code is placed into the
execution path of a program. For example, stack defense mecha-
nisms [20, 37] that protect return addresses defeat large classes of
buffer overflow attacks; separate techniques [18, 32] defeat buffer
overflows in other write-accessible parts of address space. Attacks
such as ‘return into libc’ [30] avoid injecting any executable code
at all, instead altering only data and addresses so that code already
existing in the program is subverted to execute the attack; defense
techniques like address obfuscation [16, 14, 32] counter by hiding
and/or randomizing existing code locations.

In addition to such ‘perimeter defense’ techniques aimed at spe-
cific attack vectors, a secret destandardization of the executing code
itself offers a complementary and quite general method of protec-
tion. With such instruction set obfuscation, each program (or pro-
cess, or machine, or other unit of machine code execution) has a
different and secret instruction set. If the number of possible in-
struction sets is large and externally unobservable, the cost of de-
veloping an attack from the outside is greatly increased, and differ-
ent attacks must be crafted for each protected system.

In this paper we describe randomized instruction set emulation
(RISE), an instruction set obfuscation technique implemented at
the machine emulator level. Each byte of protected code in the
program is individually scrambled using pseudorandom numbers
seeded with a random key that is unique to each program execu-
tion. With the scrambling constants it is trivial to transform the ob-
fuscated code back to normal instructions executable on the phys-
ical machine, but without knowledge of the key it is infeasible to
produce even a short code sequence that implements any given be-
havior. Foreign binary code that reaches the path of execution will
be descrambled without ever having been correctly scrambled, pro-

3



ducing essentially random bits that will usually crash the program
under attack.

1.1 Threat model
RISE does not address, let alone solve, all possible security prob-
lems or even all possible attacks via communications networks.
Our specific threat model is binary code injection from the network
into an executing program. This includes many real world attacks,
but explicitly excludes others, such as macro viruses that involve in-
jection of something other than binary code, or the ‘data injection’
attacks mentioned above that do not rely on machine code. We as-
sume that attacks arrive via network communications and that the
contents of local disks are therefore trustworthy before an attack
has occurred.

Our threat model is related to, but distinct from, other models
used to characterize buffer overflow attacks [21, 18], so it is im-
portant to compare and contrast the approaches. Our threat model
includes any attack in which native code is injected into a running
binary, including misallocated malloc headers, footer tags [2], and
format string attacks that can write a byte to arbitrary memory loca-
tions without actually overflowing a buffer [31]. RISE will protect
against injected code arriving by any of these methods. On the
other hand, other buffer overflow defenses, such as the address ob-
fuscation mentioned earlier, can prevent attacks that are specifically
excluded from our code-based threat model. RISE provides no de-
fense against data-only attacks, which can range from the modifi-
cation of jump addresses and parameters to call an existing library
function (such as the family of return-into-libc attacks [30]) to the
modification of password files or other critical information (for ex-
ample, a privilege escalation as in [4]).

We envision the relatively general code-based mechanism of RISE
being used in conjunction with more specific data- and address-
based mechanisms to provide deeper, more principled, and more
robust defenses against both known and unknown attacks.

1.2 Overview
In this paper we present a proof-of-concept RISE system, build-
ing randomized instruction set support into a version of the Val-
grind x86-to-x86 binary translator [36]. In Section 2 we describe
a randomizing loader for Valgrind that scrambles code sequences
loaded into emulator memory from the local disk using a hidden
random key. Then, during Valgrind’s emulated instruction fetch
cycle, fetched instructions are unscrambled, yielding unaltered x86
machine code runnable on the physical machine. The RISE design
makes few demands on the supporting emulator and could be easily
ported to any binary-to-binary translator for which source code is
available.

In Section 3 we present our experimental results. We have found
that RISE is successful in preventing code injection attacks, both
synthetic and real, as described in Section 3.1. Section 3.2 ana-
lyzes the potential problem of creating valid instructions with the
randomization given the dense x86 instruction set and Section 3.3
comments on performance issues.

When binary attack code, arriving over the network, exploits a
bug and manages to interpose itself into the emulator execution
path, the injected code will not have been scrambled by the loader.
Consequently, when the attack code is fetched and unscrambled
by the emulated instruction unit, it will appear as an essentially
random string of bits. Despite the density of the x86 instruction
set, we present data suggesting that the vast majority of random
code sequences will encounter an address fault or illegal instruc-
tion quickly, aborting the program. Thus with RISE, an attack that
would otherwise take control of a program is downgraded into a

denial-of-service attack against the exploitable program. Regard-
less of what flaw is exploited in a protected program—whether
well-known or entirely novel—the network binary code injection
attack will fail with very high probability.

Section 4 summarizes related work, and Section 5 concludes
with a general discussion.

2. TECHNICAL APPROACH AND IMPLE-
MENTATION

This section describes the prototype implementation of RISE using
Valgrind [36] for the Intel x86 architecture. The RISE strategy is
to provide each program copy its own unique and private instruc-
tion set. To do this, we consider what is the most appropriate ma-
chine abstraction level, how to scramble and descramble instruc-
tions, when to apply the randomization and when to descramble,
and how to protect interpreter data. We also describe idiosyncrasies
of Valgrind that affected the implementation.

2.1 Machine abstraction level
The native instruction set of a machine is a promising computa-
tional level for automated diversification. Since all computer func-
tionality can be expressed in machine code, it is a desirable level to
attack and protect. Also, with a network-based threat model, all le-
gitimately executing machine code comes from the local disks, pro-
viding a clear trust boundary. By contrast, a Javascript interpreter
in a web browser would be a poor candidate for this approach, be-
cause most Javascript code arrives over the network without firm
trust boundaries between more and less legitimate code sequences.

A drawback of native instruction sets is that they are tradition-
ally physically encoded and not readily modifiable. RISE therefore
works at an intermediate level, using software that performs binary-
to-binary code translation. The performance impact of such tools
can be minimal [11, 15]. Indeed, binary-to-binary translators some-
times improve performance compared to running the programs di-
rectly on the native hardware [11]. For ease of research and dis-
semination, we selected an open-source system, Valgrind [36], as
the basis for our demonstration implementation.

Although Valgrind is billed primarily as a tool for detecting mem-
ory leaks and other program errors, it contains a complete x86-to-
x86 binary translator. The primary drawback of Valgrind is that it
is very slow, largely due to its extensive access checking. However,
the additional slowdown imposed by adding RISE to Valgrind is
modest (see Section 3), and we are optimistic that porting RISE to
a more performance-oriented emulator will yield a fully practical
code defense.

2.2 Instruction set randomization
Instruction set randomization could be as radical as developing a
new set of opcodes, instruction layouts, and a key-based toolchain
capable of generating the randomized binary code. And, it could
take place at many points in the compilation-to-execution spec-
trum. Although performing randomization early could help dis-
tinguish code from data, it would require a full compilation envi-
ronment on every machine, and recompiled randomized programs
would likely have one fixed key indefinitely. RISE randomizes as
late as possible in the process, scrambling each byte of the trusted
code as it is loaded into the emulator, and then unscrambling it be-
fore execution by the virtual machine. Deferring the randomization
to load time makes it possible to scramble and load existing files
in the Executable and Linking Format (ELF)[38] directly, without
recompilation or source code, provided we can reliably distinguish
code from data in the ELF file format.
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The unscrambling process needs to be fast, and the scrambling
process must be as hard as possible for an outsider to deduce. Our
current approach is to generate at load time a pseudo-random se-
quence the length of the overall program text using the Linux /de-
v/urandom device [39], which uses a secret pool of true ran-
domness to seed a pseudo-random stream generated by feedback
through SHA1 hashing. The resulting bytes are simply XORed
with the instruction bytes to scramble and unscramble them. If the
underlying truly random key is long enough, and as long as it is
infeasible to invert SHA1 [35], then we can have confidence that
an attacker could not break the entire sequence. We return to the
issue of how secure the RISE encoding in Section 5.

2.3 Design decisions
Two important aspects of the RISE implementation are how it han-
dles shared libraries and how it protects the plaintext executable.

Much of the code executed by modern programs resides in shared
libraries. This form of code sharing can significantly reduce the ef-
fect of the diversification, as processes must use the same instruc-
tion set as the libraries they require. When our load-time random-
ization mechanism writes to memory that belongs to shared objects,
the Operating System does a copy-on-write, and a private copy of
the scrambled code is stored in the virtual memory of the process.
This significantly increases memory requirements, but increases in-
terprocess diversity and avoids having the plaintext code mapped in
the protected processes’ memory.

Protecting the plaintext instructions inside Valgrind is a second
concern. As Valgrind simulates the operation of the CPU, during
the fetch cycle when the next byte(s) are read from program mem-
ory, RISE intercepts the bytes and unscrambles them; the scram-
bled code in memory is never modified. Eventually, however, a
plaintext piece of the program (semantically equivalent to a ba-
sic block) is written to Valgrind’s cache. From a security point
of view, it would be best to separate the RISE address space com-
pletely from the protected program address space, so that the plain-
text is inaccessible from the vulnerable program, but as a practical
matter this would slow down emulator data accesses to an extreme
and unacceptable degree. For efficiency, the RISE interpreter is
best located in the same address space as the target binary, but of
course this introduces some security concerns. A RISE-aware at-
tacker could aim to inject code into a RISE data area, rather than
that of the vulnerable process. This is a problem because the cache
cannot be encrypted. To protect it, cache pages are kept as read and
execute only. When a new translated block is ready to be written to
the cache, we mark the affected pages as writable, execute the write
action, and return them to their original non-writable permissions.

2.4 Implementation issues
An emulator needs to create a clear boundary between itself and
the process to be emulated. In particular, the emulator should not
use the same shared libraries as the process being emulated. Val-
grind deals with this issue by adding its own implementation of
any library function it requires using a local name, for example,
VGplain printf(...) instead of printf(...). However,
we discovered that Valgrind occasionally jumped into the target bi-
nary to execute low-level functions (e.g., umoddi and udivdi).
When that happened, the processor attempted to execute instruc-
tions that had been scrambled for the emulated process, causing
Valgrind to abort. Although this was irritating, it did demonstrate
the robustness of the RISE approach in that these latent ‘boundary
crossings’ were immediately detected. We worked around these
dangling unresolved references by adding more local functions and

renaming affected symbols with local names (e.g., rise umoddi(...)
instead of ‘%’ (the modulo operator)).

A more subtle problem arises because the IA32 does not impose
any data and code separation requirement, and some libraries still
use dispatch tables stored directly in the code. In those cases the
addresses in one of these internal tables are scrambled at load time
(because they are in a code section), but are not descrambled at ex-
ecution time because they are read as data. Although this does not
cause an illegal operation, it causes the emulated code to jump to a
random address and fail inappropriately. We solved this problem by
adding machine code to check for internal references in the block
written to the cache. If the reference was internal, we performed
an additional descrambling operation on the address recovered as
data.

An additional difficulty was discovered with Valgrind itself. For
somewhat subtle reasons involving dynamic libraries, Valgrind has
to emulate itself at certain moments, and it has a special workaround
in its code to execute certain functions natively, avoiding an infinite
emulation regress. We handled this by detecting Valgrind’s own
address ranges and treating them as special cases. We believe this
issue is specific to Valgrind, and we expect not to have it in other
emulators.

3. EXPERIMENTAL RESULTS
The results reported in this section were obtained using the RISE
prototype, available under the GPL from http://cs.unm.edu/˜immsec.
We have tested RISE’s ability to run programs successfully under
normal conditions and its ability to disrupt a variety of machine
code injection attacks (Section 3.1). In addition, we have tested
the safety of executing instruction sequences after they have been
randomized (Section 3.2) and concluded that programs randomized
under RISE can execute with very low probability of doing dam-
age. Finally, we make some observations about the performance of
RISE (Section 3.3), concluding that the approach could be used in
a production system if ported to a more efficient emulator.

3.1 Attacks
We tested two synthetic and a dozen real attacks. The synthetic at-
tacks, published in [23], create a vulnerable buffer—in one case on
the heap and in the other case on the stack—and inject shellcode
into it. Without RISE, both attacks successfully spawned a shell,
and with RISE, the attacks were stopped. The real attacks were
launched from the CORE Impact attack toolkit [1]. We selected
twelve attacks that satisfied the following requirements of our threat
model and the chosen emulation tool: the attack is launched from a
remote site; the attack injects binary code at some point in the exe-
cution; the attack succeeds on a Linux OS. Valgrind is specifically
designed to run under Linux, and we tested several different Linux
distributions, reporting data from two (RedHat from 6.2 to 7.3 and
Mandrake 7.2).

All of the attacks were tested to make sure they were success-
ful in the vulnerable application before retesting with RISE. The
attacks were all successfully defeated by RISE (column 4 of Table
1). When we analyzed the logs generated by RISE, however, we
discovered that 9 of the 14 tested attacks failed without ever exe-
cuting the injected attack code (column 3). This class of attacks is
notoriously fragile, and the mere fact of emulation can often dis-
rupt them; one could imagine modifying the attacks to overcome
the perturbations of the emulator, and in the future we hope to test
these modified attacks against RISE.

The synthetic attacks and the more robust real attacks (Bind NXT,
Samba trans2, and rpc.statd), were unaffected by the emulator’s
presence and all managed to establish a shell successfully when
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Stopped by Stopped by
Attack Linux unmodified RISE

Distribution Valgrind
Synthetic heap overflow N/A

√

Synthetic stack overflow N/A
√

Apache OpenSSL SSLv2 RedHat 7.0
√ √

and 7.2
Apache mod php RedHat 7.2

√ √

Bind NXT RedHat 6.2
√

Bind TSIG RedHat 6.2
√ √

CVS pserver double free RedHat 7.3
√ √

SAMBA nttrans RedHat 7.2
√ √

SAMBA trans2 RedHat 7.2
√

SSH integer overflow Mandrake 7.2
√ √

rpc.statd format string RedHat 6.2
√

sendmail crackaddr RedHat 7.3
√ √

buffer overflow
wuftpd format string RedHat 6.2

√ √

to 7.3
wuftpd glob “ {” RedHat 6.2

√ √

Table 1: Results of attacks executed under Valgrind (without
RISE) and RISE.

the target program was run on an unmodified version of Valgrind.
However, all of them were stopped by RISE. Bind NXT and Samba
trans2 attacks are both based on stack overflows, while the rpc.statd
attack injects binary code into the GOT table.

These results confirm that we successfully implemented RISE
and that a randomized instruction set prevents injected machine
code from executing without the need for any knowledge about how
or where the code was inserted in process space.

3.2 How safe is it to execute random instruc-
tions?

Defenses such as RISE depend on randomization to prevent an at-
tacker from knowing precisely what an attack will do. If foreign
machine code is injected into a RISE protected program without
scrambling, then when it is unscrambled for execution it will be
mapped to essentially random bytes and will not perform any spe-
cific function.

If such random code does not behave as intended, what does it
do? The expectation is that random code strings will cause the at-
tacked program to crash quickly, but we don’t know a priori what
will happen. The RISE prototype produces randomized instruction
sets that are in byte-for-byte correspondence with actual x86 in-
structions, so the transformation process does not affect code size
or layout. This avoids complexity and allows us to defer random-
ization until load time. But, with so much of the x86 opcode space
already defined, there is a significant chance that a randomly scram-
bled opcode will be something other than an illegal instruction.

To test the safety of random instructions, we performed the fol-
lowing test: We built a small program that contained a rootshell
exploit coded in x86 machine code (the shellcode from ‘test-
sc2.c’ in [6]). When the program ran, it first randomized the
exploit code in place using a random number seed supplied on the
command line. It then ‘returned into’ the randomized attack code
following the pattern that could happen in an attack. We ran 30,000
tests varying only the random seed, running the program under gdb
to capture information about if, where, and why the program dies.
Table 2 and Figure 1 summarize the results. Over 99.8% of ran-
domizations lead to the program aborting by one of four signals.
SIGILL is an illegal instruction, SIGFPE is a floating point excep-
tion (such as division by zero), and SIGSEGV and SIGBUS are two

varieties of addressing problems. In the remaining cases, the pro-
gram entered an (apparently) infinite loop. In none of the 30,000
test cases did the attack code manage to access the command inter-
preter /bin/sh as intended by the attacker.

Outcome Count Percent Cumulative
Signalled 29,945 99.82% 99.82%

SIGSEGV 25,162
SIGILL 4,504
SIGFPE 178
SIGBUS 101

Looped(timeout) 55 0.18% 100.0%
Acquired shell 0 0.0% 0.0%

Total tests 30000

Table 2: Outcomes of executing randomized shell acquisition
code.

There are caveats to this data. Note that SIGSEGVs are by far
the most commonly emitted signal—but that could be misleading
because the test program is so small. A larger program with a cor-
respondingly larger space of legal addresses would be expected to
generate fewer SEGV’s and more jumps to random but legal ad-
dresses, causing more complex and possibly subtly harmful behav-
ior patterns.

Nonetheless, this case study suggests that the vast majority of
randomizations of a genuine attack do indeed simply cause a pro-
gram crash. Although this test does not directly answer the question
of how fast the crashes tend to occur, Figure 1 provides indirect data
on that point, illustrating where the program counter was when the
signal occurred. There is a strong peak at 0—in over one quarter
of all test cases, when the program was stopped it was on the first
byte of the randomized attack code, and the fraction of attacks falls
off rapidly at increasing offsets.

Another caveat in this test is that we don’t know exactly how
many instructions were executed before the signal occurred. Ran-
dom control transfers occur frequently, so the location of a signal
does not correlate directly with number of instructions executed.
As seen in Figure 1, for example, a cumulative total of about 6% of
the signaling cases occurred at addresses below the starting point
of the attack.

Using RISE itself, we can address the question of how many in-
structions are executed, because it is easy for an emulator to count
how many instructions it has emulated. However, it is much more
expensive to collect data this way. Table 3 gives results for a few
concrete data points. We show data on three real attacks against
vulnerable programs, with an average of under five instructions be-
ing executed before the attacked program is stopped (column 4).
Column 3 indicates how many attack instances we ran (each with
a different random seed for RISE) to compute the average. As col-
umn 5 shows, most attack instances were stopped by an attempt to
execute a non-existent opcode. In addition, we ran the two syn-
thetic attacks (described earlier) one hundred times each (with a
new seed each time) and discovered that neither attack ever exe-
cuted successfully. On average, each synthetic attack instance exe-
cuted 2.35 bytes of instructions before process death.

Within the RISE approach, one could avoid the problem of ac-
cidentally viable code by mapping to a larger instruction set. The
size could be tuned to reflect the desired percentage of incorrect
unscramblings that will likely lead immediately to an illegal in-
struction.
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Attack Name Application No. of Avg. no. Illegal
attacks of insns. insn.

Named NXT Bind 8.2.1-7 33 2.84 84%
Resource

Record Overflow
rpc.statd format nfs-utils 0.1.6-2 25 4.13 80%

string
Samba trans2 smbd 2.2.1a 81 3.13 73%

exploit

Table 3: Survival time in executed instructions for attack code
in real applications running under RISE. Column 4 gives the
average number of instructions executed before failure, and
column 5 summarizes the percentage of runs failing because
of illegal instructions.

3.3 Performance
There is a significant cost introduced by the memory checking en-
gine of Valgrind. However, RISE adds only a modest performance
penalty beyond that. In terms of execution time, a RISE-protected
program executes about 5% more slowly than the same program
running under Valgrind; we believe much of that slowdown is due
to the relatively high cost of the mprotect system calls used to
control modifications of the trace cache. In terms of space, signifi-
cant impacts come from the scrambling information and the private
copies of shared libraries, each of which requires about as much
space as the protected code.

We have been able to RISE-protect every one of the services
used in the experiments (httpd, named, cvs pserver, smbd, sshd,
rpc.statd, sendmail, wuftpd) on a 200 MHz Pentium computer with
128 MB RAM, and run it with reasonable response time. This is a
far smaller and slower machine than any modern x86-based server
system, which gives us confidence that the memory expense does
not make the scheme impractical and would be a reasonable trade-
off for increased security.

4. RELATED WORK
Our randomization technique is an example of automated diversity,
an idea that has long been used in software engineering to improve
fault tolerance [9, 34, 10], and more recently has been proposed as
a method for improving security [17, 24, 19]. An approach simi-
lar to RISE, but focusing on a whole-system emulator, is proposed
in [27]. Several other (nondiversifying) approaches have been de-
veloped for protecting against stack-smashing attacks, a method of
code injection [40, 20, 21, 25]. Instruction-set randomization is
also related to hardware encryption methods as protection against
piracy and eavesdropping for specialized applications [12, 13, 22]
and general purpose systems [29, 5].

4.1 Automated diversity
Diversity in software engineering is quite different from diversity
for security. In software engineering, the basic idea is to generate
multiple independent solutions to a problem (e.g., multiple versions
of a software program) with the hope that they will fail indepen-
dently, thus greatly improving the chances that some solution out
of the collection will perform correctly in every circumstance. The
different solutions may or may not be produced manually, and the
number of solutions is typically quite small, around ten.

Diversity in security is introduced for a different reason. Here,
the goal is to reduce the risk of widely replicated attacks, by forc-
ing the attacker to redesign the attack each time it is applied. For
example, in the case of a buffer overflow attack, the goal is to force
the attacker to rewrite the attack code for each new computer that

is attacked. Here the number of different diverse solutions is very
high, potentially equal to the total number of program copies for
any given program. Manual methods are infeasible here, and the
diversity must be produced auomatically.

Cowan et al. introduced a classification of diversity methods ap-
plied to security (called ‘security adaptations’) which classifies adap-
tations based on what is being adapted, either the interface or the
implementation [19]. Interface adaptations modify code layout or
access controls to interfaces, without changing the underlying im-
plementation to which the interface gives access. Implementation
adaptations, on the other hand, do modify the underlying imple-
mentation of some portion of the system to make it resistant to
attacks. RISE can be viewed as an interface randomization at the
machine code level.

Earlier work in automated diversity for security has experimented
with diversifying data layouts [17, 33], file systems [19], and system-
call interfaces [16]. In addition, several projects address the code-
injection threat model directly, and we describe those projects briefly.

In 1997, Forrest et al. presented a general view of the possibil-
ities of diversity for security [24], introducing the idea of delib-
erately diversifying data layouts as well as code, and demonstrated
an example of diversification that randomly padded stack frames so
that exact return address locations would be less predictable, mak-
ing it harder for an attacker to locate the return address and other
key stack offsets. Developers of buffer overflow attacks have de-
veloped a variety of workarounds—such as ‘ramps’ and ‘landing
zones’ of no-ops and multiple return addresses—aimed at coping
with variations across different versions or different compilations
of the vulnerable software. Deliberate diversification via random
stack padding coerces an attacker to use such generalization tech-
niques; it also necessitates larger attack codes in proportion to the
size range of random padding employed.

The StackGuard system [20] provides a counter-defense against
landing zones and similar attack techniques by interposing a hard-
to-guess ‘canary word’ before the return address, the value of which
is checked before the function returns. An attempt to overwrite the
return address via linear stack smashing will almost surely change
the canary value and thus be detected.

4.2 Enforcing security with optimizing inter-
preters

It has been noted that the current trend in binary-to-binary opti-
mizing interpreters could be used for more detailed inspection of
executing code, because every control transfer is detected during
the interpretation process. Kiriansky et al. [28] proposed a method
called ‘code shepherding’ in which various policies are defined to
govern allowable control transfers. Two of those types of policies
are relevant to the RISE approach.

Code origins policies grant differential access based on the source
of the code. When it is possible to establish if the instruction to be
executed came from a disk binary (modified or unmodified) or from
dynamically generated code (original or modified after generation),
policy decisions can be made based on that origin information. In
our model, we are implicitly implementing a code-origin policy,
in that only unmodified code from disk is allowed to execute. An
advantage of the RISE approach is that the origin check cannot be
avoided—only properly sourced code is mapped into the private in-
struction set so it executes successfully. Currently, the only excep-
tion we have to the disk-origin code policy is the code deposited in
the stack by signals, which is handled specially by Valgrind. Also
relevant are restricted control transfers in which a transfer is al-
lowed or disallowed according to its source, destination, and type.
Although we use a restricted version of this policy to allow signal
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code on the stack, in other cases we rely on the RISE ‘language
barrier’ to ensure that injected code will fail.

4.3 Other defenses against buffer overflows
In addition to the stack-frame padding and canary methods [40, 20]
described earlier, several other solutions have been proposed to deal
specifically with buffer overflows [21]. These solutions employ
compiler extensions [20, 24], hardware characteristics [25, 32],
kernel modifications [37, 32], library modifications [3], or static
analysis [41] to prevent and detect exploitation of buffer overflow
vulnerabilities.

RISE shares many of the advantages of non-executable stack and
heap techniques, including the ability to randomize ordinary exe-
cutable files and no special compilation requirements however. Our
approach differs, however, from non-executable stacks and heaps
in important ways. First, most non-executable stack/heap systems
(such as PaX [32]) are applied systemwide, while RISE can be
selectively employed on a per-process basis. This distinction be-
comes important, for example, when we consider Java Virtual Ma-
chines, where a runtime compilation process generates code, places
it on the heap, then later jumps to it. In a system with a tradi-
tional non-executable heap, JVMs cannot run at all. In RISE, the
JVM process can simply be run outside of RISE without compro-
mising the security of other running processes. Second, enabling
non-executable stack/heap protection on a system often requires
additional hardware or operating system modification. RISE runs
as a user-level application and requires no special hardware or OS
changes. RISE is capable of running on any binary-to-binary trans-
lator, and so can run on any system with such software.

4.4 Hardware encryption
Because RISE uses runtime code scrambling to improve security, it
resembles some hardware-based code encryption schemes. Hard-
ware components to allow decryption of code and/or data on-the-
fly have been proposed since the late 70’s [12, 13] and imple-
mented as microcontrollers for custom systems (for example the
DS5002FP microcontroller [22]). The two main objectives of these
cryptoprocessors are to protect code from piracy and data from in-
chip eavesdropping. An early proposal for the use of hardware en-
cryption in general purpose systems was presented by Kuhn for
a very high threat level where the encryption and decryption was
performed at the level of cache lines [29]. This proposal still ad-
heres to the model of protecting licensed software from users, and
not users from intruders, so there is no analysis of how to deal
with shared libraries or how to encrypt (if desired) existing open
applications. A more extensive proposal was included as part of
TCPA/TCG [5]. Although the published TCPA/TCG specifica-
tions provide for encrypted code in memory, which is decrypted
on the fly, TCPA/TCG is designed as a much larger authentication
and verification scheme and has raised controversies about Dig-
ital Rights Management (DRM) and end-users losing control of
their systems ([7],[8]). RISE contains none of the machinery found
in TCPA/TCG for supporting DRM. On the contrary, RISE is de-
signed to maintain control locally to protect the user from injected
code.

5. DISCUSSION AND CONCLUSIONS
In this paper we introduced the concept of a randomized instruction
set emulator as a defense against binary code injection attacks. We
demonstrated the feasibility and utility of this concept with a proof-
of-concept implementation based on Valgrind. Our implementa-
tion successfully scrambles binary code at load time, unscrambles
it instruction-by-instruction during instruction fetch, and executes

the unscrambled code correctly. The implementation was success-
fully tested on several code-injection attacks, some real and some
synthesized to exhibit common injection techniques.

Although Valgrind has some limitations, discussed in Section 2,
we are optimistic that improved designs and implementations of
“randomized machines” would vastly increase performance and re-
duce resource requirements, potentially expanding the range of at-
tacks the approach can mitigate. In the current implementation,
aside from performance issues, there is a potential concern about
the dense packing of legal x86 instructions in the space of all possi-
ble byte patterns. A random scrambling of bits is likely to produce
a different legal instruction. Doubling the size of the instruction
encoding would enormously reduce the risk of a processor suc-
cessfully executing a long enough sequence of undescrambled in-
structions to do damage. Although our preliminary analysis shows
that this risk is low even with the current implementation, we be-
lieve that emerging ‘soft-hardware’ architectures such as Crusoe
will make it possible to reduce the risk even further.

A valid concern when evaluating RISE’s security is its suscepti-
bility to key discovery, as an attacker with the appropriate scram-
bling information could inject scrambled code which will be ac-
cepted by the emulator. We believe that RISE is highly resistant to
this class of attacks.

RISE is resilient against brute force attacks because the attacker’s
work is exponential in the shortest code sequence that will make an
externally detectable difference if it is unscrambled properly. We
can be optimistic because most x86 attack codes are at least dozens
of bytes long, but if a software flaw existed that was exploitable
with, say, a single one-byte opcode, then RISE would be vulnera-
ble, although the process of guessing even a one-byte representa-
tion would cause system crashes easily detectable by an adminis-
trator.

An alternative path for an attacker is to try to dump arbitrary ad-
dress ranges of the process into the network, and recover the key
from the downloaded information. The download could be part of
the key itself (stored in the process address space), scrambled code,
or unscrambled data. Unscrambled data does not give the attacker
any information about the key. Even if the attacker obtains scram-
bled code or pieces of the key (they are equivalent because we can
assume that the attacker has knowledge of the program binary), us-
ing the stolen key piece might not be feasible. If the key is created
eagerly, with a key for every possible address in the program, past
or future, then the attacker would still need to know where the at-
tack code is going to be written in process space to be able to use
that information. However, in our implementation, where keys are
created lazily for code loaded from disk, the key for the addresses
targeted by the attack might not exist, and therefore might not be
discoverable. The keys that do exist are for addresses that are usu-
ally not used in code injection attacks because they are write pro-
tected. In summary, it would be extremely difficult to discover or
use a particular encoding during the lifetime of a process.

An attraction of RISE, compared to an approach such as code
shepherding, is that injected code is stopped by an inherent property
of the system, without requiring any explicit or manually defined
checks before execution. Although divorcing policy from mecha-
nism (as in code shepherding) is a valid design principle in general,
it is very easy to make mistakes in defining security policies, and a
mechanism that inherently enforces a correct policy is desirable.

An essential requirement for using RISE for improving secu-
rity is that the distinction between code and data must be carefully
maintained. The discovery that code and data can be systematically
interchanged was a key advance in early computer design, and that
dual interpretation of bits as both numbers and commands is inher-
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ent to programmable computing. However, all that flexibility and
power turn into security risks if we cannot control how and when
data become interpreted as code. Code injection attacks provide a
compelling example, as the easiest way to inject code into a binary
is by disguising it as data, e.g., as arguments to functions in a victim
program.

Fortunately, code and data are typically used in very different
ways, so advances in computer architecture intended solely to im-
prove performance, such as separate instruction caches and data
caches, also have helped enforce good hygiene in distinguishing
machine code from data, helping make the RISE approach feasi-
ble. At the same time, of course, the rise of mobile code, such as
Javascript in web pages and macros embedded in word processing
documents, tends to blur the code/data distinction and create new
risks.

Although our paper illustrates the idea of randomizing instruc-
tion sets at the machine code level, the basic concept could be ap-
plied wherever it is possible to (1) distinguish code from data, (2)
identify all sources of trusted code, and (3) introduce hidden di-
versity into all and only the trusted code. A RISE for protecting
printf format strings, for example, might rely on compile-time
detection of legitimate format strings, which might either be ran-
domized upon detection, or flagged by the compiler for random-
ization sometime closer to runtime. Certainly, it is essential that a
running program interact with external information, at some point,
or no externally useful computation can be performed. However, as
the recent SQL attacks illustrate [26], it is increasingly dangerous
to express running programs in externally known languages. Ran-
domized instruction set emulators are one step towards reducing
that risk.

As the complexity of systems grows, and 100% provable over-
all system security seems an ever more distant goal, the principle
of diversity suggests that having a variety of defensive techniques
based on different mechanisms with different properties stands to
provide increased robustness, even if the techniques address par-
tially or completely overlapping threats. Exploiting the idea that it’s
hard to get much done when you don’t know the language, RISE
is another technique in the defender’s arsenal against binary code
injection attacks.
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Recent work with dynamic optimization in platform independent, virtual machine

based languages such as Java has sparked interest in the possibility of applying similar

techniques to arbitrary compiled binary programs. Systems such as Dynamo, DAISY,

and FX
�
32 exploit dynamic optimization techniques to improve performance of native or

foreign architecture binaries. However, research in this area is complicated by the lack

of openly licensed, freely available, and platform-independent experimental frameworks.

SIND aims to fill this void by providing an easily-extensible and flexible framework for

research and development of applications and techniques of binary translation. Current

research focuses are dynamic optimization of running binaries and dynamic security aug-

mentation and integrity assurance.
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Chapter 1

Introduction

Program transformation and optimization are not new ideas; however the notion of per-

forming them at runtime is a recent invention. The attraction of dynamic transformation

and analysis of programs derives, in part, from the fact that the amount of static informa-

tion available to a compiler is shrinking. Object-oriented languages that support dynamic

loading and unloading of code impose a serious restriction on the ability of static analysis

to effectively guide optimization. Even in a fairly static O-O language such as C++, there

are considerably more challenges for a static compiler to overcome than in C. Static com-

pilation techniques fail primarily because they have insufficient information to work with.

When statically compiling a program with loadable modules, for instance, the compiler

cannot make many assumptions about the internal structure of those modules, and conse-

quently standard optimization techniques (such as inlining) become impossible. Also, for

static analysis to be fully effective, it is often necessary to have access to the source code.

For instance, some of the most effective security analysis programs (such as StackGaurd

[4]) need full access to the source code to correctly protect vulnerable code segments. In

reality, however, source code is often impossible to obtain.
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1.1 Dynamic Binary Translation

Dynamic binary translation is a method to overcome these deficiencies in static compi-

lation techniques. The basic idea is to dynamically monitor a running program and use

the gathered profile (which contains a great deal of information) to guide further program

transformations. The challenge is to do this efficiently and transparently. Both efficiency

and transparency are difficult problems. To provide transparency, the binary translator

must emulate all the idiosyncrasies of the underlying system, and do so in such a way that

control never leaves the translator. This is the problem that most debuggers have to solve.

However, whereas a debugger developer can choose to sacrifice speed for convenience and

reliability, such trade-offs cannot be made with a dynamic binary translator. The efficiency

constraint means that the system as a whole must be able to simulate the underlying archi-

tecture without significantly slowing down the running program. In practice, this means

about a 10% slowdown is acceptable. This leads to the use of many arcane tricks and

techniques to achieve the seemingly impossible goal of dynamic profiling with almost no

slowdown. These are what makes designing and implementing a dynamic binary translator

such an engineering challenge.

Most binary translators have the same basic components: something to profile the

running code and gather traces, something to transform the traces into fragments, and

something to link the fragments up with the program’s address space and run the frag-

ments directly on the processor. It is the last step that makes up for the cost of profiling

and transforming running code. Because most of a program’s execution is confined to

a small portion of the code, if that portion is optimized and run directly on the proces-

sor it would speed up execution significantly. Identifying those hot sections of the code,

however, is effectively impossible to do statically. Fortunately, the runtime characteristics

of many programs are often much simpler than the static whole-program characteristics.

This simplicity, along with the increased information available at runtime, makes it pos-

sible for dynamic translators to identify important segments of code that static analysis
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would not be able to catch. This ability can be used to guide instance-tailored optimiza-

tions to improve program performance, or to guide runtime security transformations to

improve program stability and security.

1.2 Why Another One?

While SIND is not the first attempt at a dynamic binary translator, it is the first open one.

Many previous systems were created by companies as either an internal research tool[1] or

as a commercial product [3], and consequently were never released. As the discussion in

Chapter 2 reveals, many of these systems also have deficiencies or peculiar requirements.

Some systems are so tied to the target platform that porting them was infeasible [1]. Other

systems have specific (and unobtainable) hardware requirements [5]. SIND was designed

with all this in mind. The SIND framework was intentionally constructed to be portable

and the current implementation for the UltraSPARC can run on commodity hardware with

no custom components. These advantages alone warrant the development of SIND. In

addition, SIND is an open-source system and as such may become an important research

tool with a large developer base. It was, in fact, the very lack of such an open tool that

motivated the development of SIND.

1.3 SIND

SIND is my effort at designing a platform-independent dynamic binary translation frame-

work, and implementing that framework for the UltraSPARC architecture (running So-

laris/SPARC). This effort stems from the fact that there are no real open platforms for

doing dynamic translation. This hinders research, especially in a field where open re-

search tools are the norm. SIND’s design was abstracted from several published dynamic

binary translators and is aimed at providing a general framework for building a binary
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translator for any given platform. The whole system is organized in an O-O fashion, with

each major component as a separate module. This modularity is intended to aid initial and

subsequent development. In the future, it should be possible to extend a module without

having to modify any other code.

The current SIND system implements user-level integer instructions. No supervisor or

floating point code is currently supported. The lack of supervisor code is not a problem

because in a modern UNIX-like system (such as Solaris), all the supervisor code lives in

kernel space. Requests to this code are made through syscalls, which are proxied by SIND.

Floating-point code is less common than integer code, but for SIND to be truly useful it

must handle floating point operations. These instructions were intentionally passed over

due to the potential complexity of implementing them correctly (and the resultant debug-

ging nightmare). SIND is also unaware of the Solaris threading infrastructure and may

therefore be insufficiently thread-safe.

1.4 Overview of the Thesis

The remainder of this document is organized as follows: Chapter 2 gives a summary of the

previous efforts at dynamic binary translation; Chapter 3 describes, in detail, the design

of the SIND system; Chapter 4 is a discussion of the current implementation of SIND for

the UltraSPARC architecture; Chapter 5 is a discussion and evaluation of the performance

and flexibility of the current experimental system; Chapter 6 is an overview of the history

of the project as well as a discussion of large scale technical issues encountered while

implementing SIND; Chapter 7 describes how to use the developmental SIND tool; and

lastly the document is concluded with an appendix describing the code itself and details

such as directory structure.
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Chapter 2

Previous Efforts

There have been several notable efforts at dynamic binary translation. The most well-

known is the Dynamo project from HPLabs. This was a dynamic optimization research

project for HPPA systems running HP-UX. Another interesting project was the FX
�
32

project from DEC (now part of HP/Compaq). This system was a dynamic binary translator

that ran IA32 binaries on an Alpha (running Windows NT). FX
�
32 had several notable fea-

tures: not only did it efficiently transform foreign binary instructions, it persistently stored

the fragments on disk and optimized them in an offline batch-processing phase. Other

interesting systems include the DAISY project from IBM, the Hotspot and Jalapeño/Jikes

JVMs, and Transmeta’s Crusoe ‘code-morphing’ technology.

2.1 Dynamo

The Dynamo system [1] is, in many ways, the seminal effort in this field. It is the most

popularized effort that actually achieves noticeable improvements in running time. The

Dynamo system is geared toward dynamic runtime optimization of HPPA binaries run-

ning under a custom version of HP-UX. The system is bootstrapped by a hacked version of
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crt.o and begins running the binary immediately. The instructions are fully interpreted

by a software interpreter, whose primary task is to identify and capture hot code traces

from the running program. The profiling method used is one of the Dynamo team’s fun-

damental contributions. They experimented with several profiling metrics and found that

a simple statistical approach yielded the best combination of accuracy and speed. First,

the profiler only focuses on code traces that started with trace heads, namely backwards-

taken branches. These branches are indicative of loops within the program, and Dynamo

assumes that this is where most of a program’s work gets done. Secondly, the profiler

assumes that, on average, the branches being taken when it examines the code would be

the ones the program would normally take. Therefore when a trace head became hot (was

visited enough times), only a single code trace would be gathered.

This code trace is then run through several simple compiler passes to yield an opti-

mized fragment. Because overhead had to be small the compiler only performs simple,

linear pass optimizations. The fragments are then loaded into the fragment cache. Dy-

namo’s cache holds the other fundamental contribution. Rather than just linking the frag-

ment so that it correctly accessed program data, the fragment is also potentially linked to

other fragments already in the cache. This obviates the need to leave the fragment cache

from one fragment merely to have to re-enter the cache to execute another fragment. This

single improvement led to impressive performance increases.

Despite its many successes Dynamo has many disadvantages. First, the system is not

open. This seriously hampers research, as the tool cannot be extended when necessary.

Second, Dynamo is specifically tailored to the HPPA architecture and HP-UX operating

system, to which I do not have access. Thirdly, Dynamo would be difficult to port, even

if the source code was publicly available, the system wasn’t engineered to be particularly

extensible. The HP engineers who wrote Dynamo admitted that the whole system may

have to be rewritten to be useful on another platform.
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2.2 DynamoRIO

DynamoRIO [2] is the successor to Dynamo. It is also a closed, proprietary system, but

it is designed for the Intel IA32 (x86) architecture and has versions that run under Win-

dows and Linux. In addition to the standard problems of building a dynamic optimization

system, DynamoRIO had to overcome the enormous cost of interpreting the dense and

complex x86 instruction set. After several false starts, this was eventually achieved with

the use of a so-called basic-block cache. This is a form of ‘cut & paste’ interpretation

in which the interpreter/decoder fetches basic blocks from memory, rewrites branch/jump

targets and executes the modified code directly on the processor. This alleviated the dif-

ficulty of actually interpreting x86 instructions, but made profiling more complex. The

initial decision to use a basic-block cache also tied the rest of the system to the x86 archi-

tecture 1. In the cause of efficiency, each component of DynamoRIO was written to be as

specific to the x86 architecture as possible. As a consequence, the entire system is highly

non-portable and would have to be completely rewritten to handle a new instruction set

[Personal Discussions with Derek Bruening, the DynamoRIO Maintainer].

Despite the tight coupling between DynamoRIO and the x86 architecture, the system

is more open and flexible than the original Dynamo. Even with the closed nature of the

underlying source code, there is a useful API that allows outside developers to add to

the system. However, such outside additions are restricted by the API and are slowed by

the need to pass data through an additional interface not used by DynamoRIO internals.

Despite the improvements over the original Dynamo, DynamoRIO failed to fully solve the

portability and extensibility problems.

1The basic block cache works by rewriting branching instructions and executing the basic
blocks directly on the processor. Therefore, a basic block cache is very architecture and OS spe-
cific.
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2.3 FX
�
32

FX
�
32 [3] is a dynamic translation program from DEC. It is designed to translate IA32

binaries to Alpha code at runtime. The whole system runs on Windows NT for the Alpha,

and existed because many NT developers were either unable or unwilling to write Alpha-

friendly code. FX
�
32 has a number of notable features. It does a great job of translating

foreign binaries, facilitated primarily by the fact that the NT API is standard across both

the Alpha and IA32 platforms. This allows rapid translation of system and library calls in

a 1-to-1 fashion. FX
�
32 also optimizes the translated traces, but in a novel way. Rather

than doing optimizations at runtime the FX
�
32 system simply translates the trace and then

saved the translated version to disk. Later on, a batch job examines the saved traces and

optimizes them using potentially long-running algorithms. In practice, this means that

each time a user ran an IA32 application it would be somewhat faster than the time before.

FX
�
32 is an interesting piece of software, but it too suffers from serious drawbacks.

Primarily, it suffers from the fact that its a closed-source system. DEC (and later Compaq)

sold FX
�
32 along with NT for Alpha, and considered releasing the code to be economically

impossible. Also, FX
�
32 is closely tied to the NT platform, which can be difficult to

develop for.

2.4 DAISY

DAISY [5] is a binary translation project from IBM that performs dynamic compilation of

Power4 binaries. It is similar to Dynamo in principle, but it employs more sophisticated

translation and profiling schemes. This allows DAISY to do a more sophisticated analysis

than Dynamo. For instance, a limited form of control flow analysis across branches and

calls is performed (to eliminate as much indirection as possible). However, this added

power comes at the cost of larger runtime overhead. The DAISY project obviated this
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cost by creating a custom daughter-board that would house an auxiliary processor to run

the DAISY system. This secondary processor only has to run at a fraction of the speed

of the main processor, and the daughter board has several megabytes of isolated memory

available only to the auxiliary processor. Because of this, DAISY has automatic memory

protection at no runtime cost, the additional hardware also removes the distinction between

the operating system and user applications. This means that DAISY can optimize both OS

code and application code (and even optimize call sequences from one through the other).

Unfortunately, the DAISY project never produced a commercially-available version

of the DAISY processor in hardware. All the published results came from detailed soft-

ware simulation of the proposed hardware. Even if the hardware were eventually mass-

produced, it was intended for use in high-end servers, and so would probably have been

very expensive.

2.5 Crusoe, JVMs, and Others

Other dynamic translation projects include the Code-morphing technology used in Trans-

meta’s Crusoe processor [7], the HotSpot and Jalapeño/Jikes optimizing JIT JVMs, and

other virtual machines that employ dynamic (otherwise known as Just In Time) compila-

tion techniques. The main disadvantage with code-morphing is that in addition to being

proprietary, it is specifically tied to the Crusoe VLIW architecture. The JVM and other

language virtual machine projects, although useful from a design perspective, did not con-

tribute much to the actual construction of SIND. This is due to the virtual machines being

tailored to the needs of a specific language. This means that most language virtual ma-

chines, although closer to hardware than the uncompiled program, have features useful to

the source language that are difficult to map directly to hardware.
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Chapter 3

SIND Design

The SIND system design is not particularly revolutionary. It is a synthesis and extension of

many dynamic translator designs. Because most dynamic binary translators have to solve

similar problems, many have similar designs. This similarity is encouraging, because

it means that if this structure can be expressed in code, the construction of new binary

translators would be reduced to extending the base modules, rather than designing the

whole system from scratch.

Figure 3.1 shows the major components of SIND. The interpreter is the module that

handles the dynamic execution and profiling of the running binary. The transformers trans-

late gathered traces into fragments. The fragment cache handles fragment linking and runs

the fragment code on the processor. The memory and syscall-manager handle the sys-

tem specific aspects of memory protection and operating system interaction, respectively.

They are separated from the other modules to ensure as much platform independence as

possible. Lastly, the bootstrapper and dispatcher initialize the other modules and handle

inter-module communication.

This framework is generic enough to encompass all source and target architecture con-

figurations, and separates the components so that they may act like ‘plug-in’ modules.
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Figure 3.1: SIND modules

For instance, because the interpreter accesses memory through the Memory Manager and

accesses OS functionality through the Syscall Manager, the interpreter only has to emu-

late the source architecture and has no dependence on the operating system. This means,

ideally, that an UltraSPARC interpreter would be able to run (without modifying the in-

terpreter source) on both an UltraSPARC and Power4 and would trust the Memory and

Syscall Managers to take care of OS specifics. The intention is to isolate the interpreter

from all but the most large-scale details of the target architecture. Basically, only the endi-

aness and bit-width of the underlying system need to be taken into account (and this, only

because C++ specifies no standards for the size and endianess of data).

The basic operation of the SIND framework is also platform-independent. The pro-

gram to be run under dynamic translation is started by the bootstrapper. The bootstrap-

per assures that all dependencies (libraries and other shared objects) are loaded and halts

execution just before the program starts. Then, control passes to the dispatcher, which

initializes all the remaining SIND modules and starts up the interpreter. The interpreter
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dynamically executes the program and gathers profiling information. According to some

internal metric, the interpreter eventually decides that it has encountered an interesting

code segment and gathers the relevant instructions and processor context into a trace. This

trace is then handed (through dispatch) to the transformers. The transformers transform

the trace into a functionally equivalent fragment. The nature of the transformations could

be varied. Traces could be rewritten to be more efficient, but they could also be rewritten

to be more secure, or to generate more fine-grained profiles. When the final transformer

has finished its transformations, the fragment is handed to the fragment cache. The cache’s

primary responsibilities are to guarantee that the running fragment will have transparent

access to all program data, and to simultaneously guarantee that the running fragment will

not modify SIND or break out of SIND. The cache can protect SIND data by selectively

write-protecting the regions of memory that SIND inhabits when the cache is entered and

un-write-protecting the regions when the cache is exited. The cache also needs to check

for system calls that might un-protect the SIND memory regions. It can do this by placing

itself between the executing fragment and the eventual system call, and checking on the

parameters passed in by the fragment. The cache can guarantee that an executing fragment

will be able to access all program data by performing a final rewriting of the fragment in a

process analogous to dynamic linking and loading. From then on, when program control

reaches the address of a fragment, control is passed to the cache, and the fragment then

runs directly on the processor. When control leaves the fragments in the cache, the SIND

interpreter starts up again and continues dynamic program execution.

3.1 Interpreter

The interpreter’s main function is to gather profiling information and code execution

traces. These are passed to transformers, which use the profiling information to guide

specialized transformations of the code traces. Because one of the goals of the SIND sys-
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tem is to do runtime binary optimization, it is vital that the interpreter should introduce as

little overhead as possible. As a consequence, the interpreter must be very efficient and

every reasonable effort must be made to improve its speed.

The first interpreter to be fully designed and implemented in SIND emulates the 64-

bit SPARC v9 architecture. The design was motivated by several factors: first, because

SIND runs in non-privileged mode, the interpreter is primarily a non-privileged instruc-

tion interpreter; second, the interpreter only needs to be functionally correct, therefore no

complicated hardware structure needs to be emulated in order to produce accurate simu-

lation. The interpreter’s job is then to replicate a user’s view of the processor and discard

any lower-level structure that interferes with the efficient execution of code.

3.1.1 Registers

The interpreter replicates user-visible registers as an array of 64-bit quantities in memory.

On a 64-bit host machine these are native unsigned 64-bit integers; on 32-bit machines

they are two-element structs. There are several caveats, however. The SPARC archi-

tecture supports register windows for integer registers. This was emulated by allocating a

large array of 64-bit quantities, setting the lowest 8 to be the global registers, and having

a window of 24 registers slide up and down the array as procedure calls are made and

registers are saved and restored. It is important to be able to restore the user stack in order

to be able fully to emulate a system call. It is also important to keep SIND’s own stack

separate from the user stack, because the interpreter runs in the address space of the user

process and so in principle the user process’s stack entries might clobber the interpreter’s

stack. Creating and maintaining two separate stacks is discussed below, but the discussion

of restoring the user stack is in the Syscall Manager section.

Maintaining two separate execution stacks requires a bit of system hacking. The last

valid stack frame is left alone, and its stack pointer (pointer to the top of the frame) is saved
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for reference. A new page is allocated for the separate stack, and its topmost address is

recorded. This topmost address is to become the new frame pointer. Then an explicit save

instruction is issued; it creates a new register window, but with the stack pointer pointing

into the new page. Then the frame pointer register can be manually set. From that moment

on, all further calls should write their stack data to the alternate stack page(s). Apart from

protecting the SIND call stack from manipulation by the interpreted program, this also

means that SIND’s stack can be mprotect-ed to safeguard its contents when executing

code directly on the processor (either issuing traps or when in the fragment cache).

The floating point registers on the SPARC consist of three overlapping sets of 32, 64,

and 128-bit floating point registers. There are 32 32-bit, 32 64-bit registers, and 16 128-

bit registers. The 128-bit and 64-bit registers overlap completely (e.g., the first 128-bit

register is the same as the first two 64-bit registers), and the 32-bit registers overlap with

the bottom half of the other two. This was implemented as a contiguous region of memory,

accessed in different ways depending upon the instruction used (some checking had to be

done to make sure no accesses were attempted to non-existent 32-bit registers).

3.1.2 Instructions

Although the SPARC v9 architecture is 64-bit, the instructions are still 32-bit, which al-

lows backward compatibility (consequently, the software interpreter is also capable of run-

ning SPARC v8 code). The SPARC has 30 different instruction formats, grouped together

into 4 major families. However, these formats are all the same length (32 bits) and were

designed to be quickly parsed by hardware. This permits streamlining the fetch and decode

portions of the interpreter. Each instruction format was specified with its own bit-packed

struct, and all such structs were grouped together in a union with a normal unsigned 32-bit

integer. Each format family is distinguished from the others by the two high-order bits of
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the instruction.1 Thus the interpreter has jump tables for each instruction format family

(actually three jump tables and one explicit function call), that are keyed by the opcode,

whose position depends upon the format family. A case statement branches on the two

most significant bits to the correct jump table, and then the correct function is called.

3.1.3 Exceptional Conditions

Occasionally during execution, an instruction will cause an error. The SPARC v9 architec-

ture manual clearly defines these exceptions, and, for each instruction, specifies which ex-

ceptions it can raise. Many of the exceptions are caught by the operating system and used

to handle things like page faults and memory errors. Non-recoverable exceptions usually

cause the operating system to send a signal to the executing process. To mimic this, if the

interpreter decides a given instruction would cause an exception (such as divide-by-zero),

then a procedure similar to that used for system calls can be used. The running binary’s

state is restored on the stack, and then the interpreter executes the offending instruction

directly on the processor. This generates the appropriate operating system action (usually,

killing the process).

3.1.4 Signals and Asynchronous I/O

In the Solaris operating system there are really only two ways of communication between

user and supervisor (kernel) code. One, the system call or trap, is discussed in the Syscall

Manager section. The other, signals, had to be dealt with differently. Because the SIND

system is guaranteed to be loaded before all other libraries, its definitions of functions

will take priority (if they’re exported). The SIND interpreter interposes on the signal

1To be precise, Format 3 and Format 4 both can have the values 10 or 11 in their upper bits, but
in SIND Format 3 instructions are instructions with 10 in the upper bits and Format 4 instructions
have 11 in the upper bits.
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functions, and registers a special handler for all registrable signals. Thereafter, when the

interpreted program registers a signal, it will go through SIND’s registration system, rather

than the system’s. This means that SIND has to record the signal handlers registered by

the program (in order to execute them when a signal is generated). When the OS sends the

process a signal, it will be first intercepted by SIND, which will need to start interpreting

the handler registered for that signal. In this way a signal cannot cause control to leave the

SIND system.

3.2 Memory Manager

The SIND memory manager provides a generic interface between the process’s address

space and SIND’s (possibly separate) address space. In the non-architecture specific

memory manager, the interface consists of a small number of memory access and mod-

ification functions. To access memory, there are ReadByte, ReadHalf, ReadWord,

ReadDoubleWord, and ReadQuadWord. These functions take an Address argument

(the size of which is determined at compile time), and return the data located at that lo-

cation. The names are meant to convey the size of value returned and follow the modern

RISC convention of a word as a 32-bit value. But this does not mean that somehow the

memory manager interface is only appropriate for RISC machines. To modify memory

there are corresponding Write ... methods.

The interface exists as a separate module to support variations of SIND in which the

interpreter and transformer exist in separate address spaces. In fact, the initial SIND sys-

tem did exist in a separate space and accessed the processes address space using procfs

[9]. For the current incarnation of SIND (which inhabits the process’s address space), the

memory manager just checks the address (to make sure that the program is not modify-

ing SIND), and dereferences it appropriately. The Read and Write methods are also

prefixed with inline directives to further eliminate overhead.
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3.3 Syscall Manager

Because SIND sits on top of the kernel and only interprets user-space code, system calls

must be executed directly on the processor to initiate the correct kernel action. SIND

cannot simply execute the trap instruction directly, however the interpreted process’s state

must be reincarnated in the hardware, and then the trap can be issued correctly (returning

into SIND, of course).

To restore the user stack, the original stack top (before control was passed to SIND)

address must be preserved. The simulated stack (in the register windows array), must

then be copied over to the stack area before the system call can be made. However, just

copying the registers is insufficient. Each stack frame may have an arbitrarily large spill

area, and that must also be preserved and copied over for trap emulation. Each time a

save instruction is issued, it is remembered so that the stack offset for each frame can be

properly reconstructed. However, the spilled variables do not have to be remembered. Be-

cause the interpreter is executing in the same address space as the target process, values

written to the spill area will be at the correct location for the stack, so the stack frame and

its corresponding registers just need to be copied around such spilled variables. However,

even this is not enough to completely recreate the user stack. The register window state

must also be replicated in the underlying processor. Basically, this means ‘rolling back’

the current stack to its state when SIND took over and then pushing on all the necessary

frames. When rolling back the stack, it is necessary to save the stack frames as they are

deallocated (because they will need to be restored before normal execution can resume).

In practice, because the two stacks are kept separate, this means mprotect-ing the in-

terpreter’s stack area and issuing the necessary number of restore instructions. When

the stack has been rolled back to its starting position, the simulated register windows need

to be copied to the processor and then explicitly saved to the stack. Although this is also

time-consuming, we get register saving around spilled variables automatically.
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3.4 Trace Gathering

The identification and collection of traces happens within the interpreter but can be consid-

ered a separate subsystem. This is possible because the trace identification and gathering

code is completely independent of the rest of the interpreter (but for efficiency reasons

is part of the interpreter object). Identification of traces happens at the instruction level;

an instruction with the potential to be interesting is identified as it is being emulated. On

the side, the trace gathering system maintains a data structure (currently a hash table) that

contains all encountered trace heads. When an interesting instruction is being emulated,

the tracing code checks to see if it has been encountered before, increments its counter if

it has, and inserts a new record if it hasn’t. In the current experimental system, the trace

gathering code looks for branches whose target is behind them (a characteristic signature

of a loop). In order to avoid gathering traces for rarely executed code a certain number of

iterations have to pass before a trace head can be considered hot. Currently, the system

also has a threshold of 15, which means that on the 15th execution of the same potential

trace head the instruction is assumed to be a genuine trace head and trace gathering can

begin in earnest.

A trace is simply a sequence of instructions gathered after encountering a trace head.

There are no restrictions placed on the termination conditions for a trace, however the

current system will stop gathering instructions if a certain numerical limit is reached (cur-

rently 256), or if the trace head is encountered again (indicating that we have completed

one iteration of the loop). Note that these restrictions do not prevent a trace from including

a complete function call (and the corresponding function’s body), so function inlining is

essentially free. A trace is essentially an array of instructions, each of which may have

some annotation (for instance, it might be useful to record whether or not a branch was

taken). A trace also includes an array of registers that contain the machine state when

the trace head was encountered. This information is then passed on to the Dispatcher for

subsequent transformation and insertion into the fragment cache. If these operations com-
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plete successfully, the entry in the trace-head data structure is updated, so that next time

the interpreter will jump directly to the fragment cache, rather than interpreting the trace.

3.5 Transformers

A SIND transformer has a simple interface: it accepts a trace and returns a trace. In this

way transformers can not only optimize a particular machine code trace, but can be used

to convert a trace from one machine to another, or to convert a trace from machine-level to

an intermediate form more appropriate for optimization. Input validation is accomplished

by extending the base trace class to a concrete, platform-specific version, and writing the

transformers to use the most specific trace class. Then, if an incorrect type of trace is

handed to a transformer, the type error will be caught during compilation. The proper

sequencing of Transformers is the job of the dispatcher and is described in detail later.

3.6 Fragment Cache

The fragment cache has a simple interface. Apart from constructors, the fragment cache

has only two real methods; the first takes a new trace and inserts it into the cache, and the

second executes a fragment (keyed by the program counter) stored in the cache and returns

the new processor state (for the interpreter). Internally, however, these functions are far

from simple. The fragment cache maintains three sets of data. The first is the fragments

themselves, the second is the fragment prologues, and the third is the fragment epilogues.

The prologues act as guard code to fragment entry. They perform any checks specific

to a fragment. These checks may be dictated by the types of transformations applied (for

instance, constant folded instructions may need to check and make sure the constant hasn’t

been changed). The epilogue serves as the fragment’s only exit point. All possible exit

points (such as branches, calls, and jmps) have their target addresses changed so that
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on exit from the fragment code, they jump to the epilogue. The epilogue’s job is then to

clean up after the fragment, capture the processor’s state, and then jump to the fragment

cache’s function to return control to dispatch.

The insertion function (newTrace()) takes a fragment, generates a prologue and

an epilogue, and rewrites crucial instructions to correctly jump to the epilogue. This

function then has a reduced instruction parser that looks for these crucial instructions,

rewriting them as it copies them from the trace into the cache. The execution function

(jumpToCache()) has a simpler job: it jumps directly to the prologue code for the ap-

propriate fragment. After the fragment has finished, jumpToCache() packages up all

the new processor context in a class wrapper (FragExitContext) and returns to the

dispatcher, which updates the interpreter’s state accordingly.

3.7 Bootstrapper and Dispatcher

3.7.1 Bootstrapper

The SIND bootstrapper has the task of correctly halting normal execution, initializing the

SIND modules, and then transferring control to the interpreter. The current incarnation of

SIND for Solaris/SPARC is a preloaded library that loads itself before any other libraries

(excluding ld.so). The bootstrapper runs as the .init function for this preloaded library.

The bootstrapper first initializes the SIND modules in memory, then sets SIND’s signal

handler to handle all handleable signals, and finally overwrites the first two instructions

from the start symbol with a call to the SINDstartup() function. Therefore, when

the bootstrapper initialization function has finished, all signals generated during normal

program execution will be correctly intercepted by SIND and when all the initialization

routines of all the dependencies are done, control will return to the bootstrapper.
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The SINDstartup() function’s job is to correctly capture the state of the process

at the start symbol and then jump into the interpreter’s executeLoop() function,

which does the actual interpretation. The process’s state is captured with a bit of SPARC

slight-of-hand. The address of the interpreter’s registers is loaded into a register known to

be zero, and then each register is stored into the interpreter’s register array at the correct

offset. SINDstartup then allocates several pages for SIND’s separate stack, initiates

the new stack with an explicit save, and overwrites the new framepointer (passed through

global registers). Thus SINDstartup forms a buffer between the process and SIND it-

self, but because SINDstartup has no immediate variables of consequence (everything

is stored in the interpreter object), the user process can overwrite its stack frame without

adversely affecting SIND.

3.7.2 Dispatcher

The Dispatcher’s main purpose is to serve as a common interface through which all the

SIND modules can interact. In particular the dispatcher coordinates all the details of trace

processing. The transformers are akin to optimizations in an optimizing compiler and it

is the responsibility of the dispatcher to properly sequence the transformers (as well as

handle any shared data needed by several transformers). This ordering is very specific to

the transformers used, and is an additional detail not necessary to the functioning of either

the interpreter or the fragment cache. Once all the transformers are done, the dispatcher

then hands the annotated machine instructions to the fragment cache. If, for instance, the

transformers operate on a different instruction set (either an intermediate representation

or a foreign architecture), the dispatcher will need to further transform the code to the

architecture that the fragment cache wants.
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Chapter 4

SIND Implementation

4.1 Overview

SIND is currently implemented in a subset of C++ that is basically C, but with classes

rather than structs. This exploits the convenience of C++’s object-oriented infrastructure,

but avoids the more troublesome aspects of the language, such as templates and iostream.

I/O is done using the traditional C functions, but dynamic memory is allocated with the

new operator. The bulk of the SIND system is implemented as classes (the only excep-

tions being the bootstrapper and the signal handling code). The classes form interface-

implementation pairs, where an implementation inherits from its parent implementation

and implements an interface that inherits from its parent’s interface. Although this is tech-

nically multiple inheritance, only one non-interface class is inherited from so all the com-

plications endemic to C++-style multiple inheritance are avoided. The following figure 4.1

illustrates this relationship in terms of the abstract CPU class and the concrete SPARCCPU

class.
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CPUCPU_interface

SPARCCPUSPARCCPU_interface

Figure 4.1: CPU inheritance tree

4.2 Interpreter

The SPARC interpreter is implemented in the class SPARCCPU. Internally, the class con-

tains the array of registers needed to implement register windows (as described in subsec-

tion 3.1.1). SPARCCPU also contains representations of all user-visible registers (like the

condition code registers). The only other significant amount of internal data to the inter-

preter are the jump tables for instruction decoding/execution. There are 4 format classes

of instructions in SPARC, and each one is keyed by the 2 high order bits in an instruction

word. Format 1 has only 1 instruction (the call instruction) and so when decoded, the

method implementing call can be called directly. All other formats need further de-

coding. However, SPARC is RISC, so this decoding is very simple. Each format family

has an additional op specifier (for instance Format 2 has an op2 field), and the specific

instruction is keyed by this op field. Therefore the methods implementing instructions are

grouped by format into jump tables, and a switch (on the format number) will then call the

function stored at the op specifiers offset in the appropriate jump table.

All of the instruction implementation methods return an int. Following the standard

C programming style, a return value of 0 indicates success. Non-zero returns indicate

failure. A positive result indicates a SPARC exception (such as divide-by-zero). These

need to be emulated correctly (as described in subsection 3.1.3). Negative return values

indicate a SIND internal error (such as an unimplemented instruction, or strange stack

usage). These will usually cause the interpreter to spit out a error message and exit. The
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error conditions are defined in the SPARCExceptions.h file.

In general, the implementation of the interpreter was a straightforward if time-consum-

ing task. Certain instructions were non-trivial, however, and a source of constant frustra-

tion. save and restore are two particularly notable members of this category. Their

implementation was complicated by all the array manipulation they had to perform. Off-

by-one errors, or incorrect specification of boundary conditions were a particular problem.

4.3 Bootstrapper

The bootstrapper is perhaps one of the ugliest and strangest pieces of C code I have had

to deal with. The current version is actually the third iteration of bootstrappers for SIND.

It exploits the LD PRELOAD functionality to load itself into the process’s address space,

and overwrites the first two instructions to jump to SIND. Getting this to work involved

a lot of research into the Solaris linking infrastructure [8] [6] [11]. The bootstrapper has

to locate the start symbol, and then overwrite part of its code (which involves some

mucking about with mprotect). The implementation of the bootstrapper was plagued by

all the problems associated with system code. Poor documentation leading to poor code,

strange documentation leading to strange code, and of course, the ever-present threat of

undocumented features. The bootstrapper’s greatest nemesis was in the form of such un-

documented behavior. To locate start the bootstrapper uses the dlsym() function to

find the address. According to the documentation for the dlfcn functions, dlsym()

needs a handle to the loaded object in order to work correctly. Such a handle is provided

by a call to the dlopen function. Normally, dlopen() is used to open dynamic objects

on the fly (as Apache does with its loadable modules), but if handed a NULL rather than

a filename, dlopen() will return a handle to the current object. This is the method rec-

ommended in the documentation, yet when dlsym() was handed this handle it returned

a strangely offset value of start (it was, in fact, always 200 bytes away from the real
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location). This odd behavior led to numerous errors, and was finally dispelled by consult-

ing independent code examples (that is, code not written especially for the Solaris linkers

guide[11]). This is a problem known to a small group of people on line, and has something

to do with accessing symbols that begin with a “ ”. The solution is to use another form of

dlsym(), and hand it a NULL handle. This will default to the current object.

4.4 Fragment Cache

The fragment cache was another tricky piece of coding. Although the SPARC instruction

set is RISC, control transfer instructions are scattered throughout all the format families,

so the mini-decoder could not be compact. As the instruction trace is stepped through,

each instruction must be checked to see if it can leave the fragment. If it can, its target

address (or the code following it, if not taken) must be adjusted to jump into a part of the

epilogue. This part of the epilogue is then generated which will remember the PC of the

exiting instruction and then transfer control to the state capture/cleanup code. Because the

current fragment cache doesn’t do any fancy internal linking, the code is not particularly

complex, just rife with detail. Needless to say, this code is the resting place of many bit

level errors and other demons of the assembly/machine code world.
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Chapter 5

Evaluation of SIND

5.1 Performance of SIND

To measure the performance of SIND, several sample programs were run, and their execu-

tion times compared against those when using SIND. The programs in question were the

simple test programs used to debug SIND itself. These programs were used rather than

conventional benchmarks because SIND cannot currently run SPECint to completion.

5.1.1 Speed of Interpretation

The interpreter’s speed was measured by timing the main loop of the executeLoop()

function in the interpreter. The timing was performed using the high-resolution timing

facilities of Solaris. Trace-gathering and fragment caching were both turned off, so the ex-

ecution was completely within the interpreter. Debugging statements were also disabled1.

As the table shows, the emulator introduces a slowdown factor of 150 to 225. This

1Initially, I erroneously gathered data with them enabled first, which allowed me to see that
SIND’s voluminous debugging output causes an additional slowdown of roughly a factor of 20.
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test description slowdown
sind test arithmetic and logic test 140x
sindIO test hello world 210x
sindTimingTest timing calls and I/O 223x

Table 5.1: SIND interpreter slowdown

multiple is consistent with an inspection of the compiled code for the SIND interpreter.

The simple arithmetic functions have little or no branching statements and are between

100 and 150 instructions in length. The more complicated instruction functions, such as

those for branching, are many thousands of instructions long, although most of that code

lies in mutually exclusive branch targets. Inspecting a trace of instructions running from

the initial decoding, through condition code checking, etc., shows instruction counts of

between 200 and 250. Traps are the longest running instruction. The tcc SPARC instruc-

tion has to do all the condition code checking of a normal branch, but control is passed

to the handleTrap() function, which must restore program state to the processor and

execute the trap directly on the hardware. The situation is even worse for a syscall (ta

8), because it must pass through the handleSysCall() function first, which checks

the arguments to make sure that the syscall will not side effect SIND itself. Fortunately,

traps are rare.

Most of the interpreter’s time was spent in the linking code. A program such as hello

world, will require the execution of roughly 19,000 instructions 2. Most of the time is spent

in the linker back-patching the procedure linkage table with dynamic function addresses.

2Specifically, 19177 instructions.
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5.1.2 Speed of Cached Fragments

Because the current system has no translators of note, the fragments in the cache are not

very different from the gathered traces. The branch and jump targets have been rewritten,

but no instructions have been eliminated. As a result, the fragment executes at almost the

same speed as the native code. The prologue only adds 2 instructions (currently), although

future transformers could enlarge this. Although the epilogue is many instructions long, it

is not executed in its entirety. On an exit from a fragment, only two instructions would be

executed. The first instruction is to jump to the fragment cache exit code, and the second

loads the exiting PC value to a memory location (this instruction is in the branch delay

slot). Therefore, the fragment is only 4 instructions longer than the original trace.

5.2 Memory Footprint of SIND

Almost all of SIND’s data is statically allocated before hand or is on the stack. Those data

structures that use dynamic memory have a default constructor that statically allocates a

fixed amount. SIND can be built so that it allocates no dynamic memory. In this case,

SIND occupies 440K of space 3. This footprint will grow, however, as SIND is made

self-contained (as explained in 7.2).

5.3 The Agility of SIND

The current experimental SIND system is capable of running ‘toy’ programs such as

hello world. Current development efforts are focused on getting SIND to execute

the SPECint2000 benchmarks (with the exception of the mtrt benchmark which is multi-

threaded). Because the toy programs generate only a few long running loops, the fragment

3Actually 451568 bytes.
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cache is insufficiently tested by them. Therefore, the bugs in the current system that pre-

vent execution of SPECint are almost certainly in the fragment cache.
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Chapter 6

SIND: A History

6.1 A Brief History

SIND began its life as a class project in a Java seminar (Spring 2001). Dino Dai Zovi

and I were inspired by the Dynamo paper to try and implement a similar system for the

SPARC. Very shortly we discovered why it took a small team of HP engineers over a year

to construct Dynamo. We began with the ISEM 1 source, but soon ran into two limitations.

First, ISEM only interprets 32-bit SPARC v8 code, and second (and more importantly)

ISEM is a whole system emulator. ISEM emulated both privileged and non-privileged in-

structions, as well as a fully-featured memory subsystem and S-bus-style system bus. This

was too much overhead to deal with, and after a summer of sporadic hacking, I decided

that it would take less time to code an UltraSPARC emulator from scratch than to rip out

the salient parts of ISEM. Also, initially we used ptrace [10] to access the running pro-

cess, and had lifted most of our (poorly understood) bootstrap code from gdb. This led to

a whole stream of difficulties with ld.so and memory protection. By the Christmas of

2001, I had given up on the ISEM ptrace combination and started coding the SPARC v9

1The Instructional SPARC EMulator, a 32-bit SPARC v8 emulator written by Barney Maccabe
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interpreter. Dino Dai Zovi elected to start a PowerPC interpreter, but because of conflicts

with work, school, and other research obligations could only make infrequent and minor

contributions to SIND.

By the following summer I was the only developer working on SIND, and was mostly

finished with the core interpreter. By the fall, the interpreter was sufficiently complete to

warrant construction of a new bootstrapper. This lead to several branches of experimenta-

tion. Initially, I attempted to use the Solaris procfs facilities, but this proved to be overly

complex and fraught with peril. I then decided that in the interest of both efficiency and

ease of coding, I would locate SIND in the same address space as the running program.

There were several implementation options: I could modify a system program (such as

ld.so or libcrt.o) to automatically load SIND whenever a program was loaded; or

I could use the LD PRELOAD trick to cause SIND to be loaded as a shared object. The

former option had the disadvantage of making SIND difficult to install and maintain (after

all, I would have had to keep up with the latest release of whatever system program I mod-

ified), and the latter option had the disadvantage that my code would have to be massaged

into position-independent library code. The latter option was more general and ultimately

easier however, and so, compelled by my innate laziness, I made SIND a preloadable

library.

The bootstrapper itself was the scene of some vicious entanglements with the So-

laris Operating Environment[6]. I initially caused execution to return to SIND code by

mprotect-ing the start symbol’s page to non-executable. Thus, when control finally

transferred to the target program, a segfault would be triggered and intercepted by my

handy bootstrapper cum signal handler. This had the disadvantage of being inexact and

limited by the restrictions on actions inside signal handlers. This approach was abandoned

by Spring of 2003, and replaced with the current bootstrapping system. The new sys-

tem is exact and considerably more complete than that which it replaced. The spring also

saw the stabilization of the interpreter, the beginnings of a trace-gathering system, and the
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introduction of the Syscall Manager.

6.2 Experiences from the Design and Implementation of

SIND

The design of the interpreter itself presented several challenges. There are two main op-

tions for an instruction set interpreter. It can be a full-fledged software interpreter, emu-

lating the source instructions in software, or, if we are planning on running it on the same

architecture as the instructions, we can do a ‘cut-and-paste’ interpreter. The cut-and-paste

solution (otherwise known as a basic block cache) works by copying each instruction en-

countered to an area in memory, remembering to rewrite control-transfer instructions to

jump to the correct new locations and then executing these copied instructions directly on

the processor. This is a very lightweight interpretation system, and because it requires a

decoder only capable of distinguishing control transfer instructions from the rest, it is the

preferred solution on x86 platforms (systems such as Valgrind [12] and DynamoRIO [2]).

However, such cut-and-paste systems have one major disadvantage. They can only be run

on the platform whose instructions they are interpreting. This presented a disadvantage for

our work, because we not only wanted to explore dynamic optimization, but also foreign

binary execution (a lá FX
�
32 [3]). If we wanted to run this interpreter on another platform,

it would have to be a full-fledged instruction set emulator.

The core interpreter itself is not complicated: emulating a compact RISC machine is

not too difficult. Most of the effort went into the bootstrapper and system call subsystems.

The bootstrapper itself has gone through many permutations. In the end, there were two

major options. Either the interpreter starts itself up in the library initialization routine, or

it causes control to transfer from the target binary’s start symbol into the interpreter.

The problem with the first option is that it halts the loading process halfway through.
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Normally the binary and all its dependencies are loaded and then, in the loading order,

all the dependencies have their initialization routines called. If SIND were to take over

in its initialization routine, then it would have to act like the loader and finish process

loading. The second option, though it appeared to be more complicated, actually turned

out to be the easier route. In SIND’s initialization routine, the bootstrapper mprotects

the loaded .text segment to allow writes. The first two words/instructions after start

are saved to a reserve area, and then are overwritten with an explicit call instruction into

the interpreter’s code. This means that SIND will only be started after the loader has

finished. This system is imperfect, however. If any loaded library prevents control from

transferring to the start symbol (such as, for instance, by never exiting the initialization

routine), then SIND will never be entered. This is not a big problem, however; because

the SIND bootstrapper can easily be replaced without affecting the interpreter, a more

thorough system can be developed and inserted without difficulty.

The syscall subsystem was discussed thoroughly in the design section above and took

time to develop simply because of its complexity (almost all owing to the use of register

windows). Development on the whole system was hampered by several tool deficiencies.

The debugger we were using (gdb) has only limited support for 64-bit objects, and this

severely hampered diagnosis. The debugger was also of limited use because we were not,

in fact, debugging the running program: we were debugging a library that was loaded

with the Unix LD PRELOAD facility. Trying to use gdb’s built-in facilities turned out to be

more trouble than it was worth. The best method we discovered was to compile SIND with

debugging on (and explicit stabs support), and cause an intentional segfault (by derefer-

encing NULL) near the suspect method. We could then load the core into gdb, and it would

often give us enough information to help with debugging. When we needed more control,

we inserted an asm block with an explicit debugger trap (ta 5 on Solaris/SPARC).

Debugging, in fact, has proved to be the most complicated part of developing SIND. In

an effort to make debugging easier I developed two tools. Both were actually modifications
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to SIND in order to capture state correctly. The first was the driver. This was a program

that stood between SIND and the running program and hand-fed SIND an instruction at

a time. This was useful for debugging individual instructions in the interpreter, but not

at all useful for dealing with all the strange interactions possible when SIND was in the

process’s address space. When debugging SIND in the process’s address space, simply

dereferencing NULL to cause a segfault was insufficient. gdb would not correctly load

the preloaded library and so certain things (like %sp and the PLT) would be different than

when the program crashed. In order to get a clear picture of memory at the point of interest,

a ‘BOGUS’ flag was added to the SIND build process. When compiled with BOGUS, the

SIND binary would insert itself into the running program’s address space, and trigger a

transfer of control at start. However, control would not enter the interpreter, instead

the overwritten instructions would be replaced and the PC of interest would be overwritten

with a jmp to the BOGUS function that would print out the relevant parts of memory and

then quit. These values would be those computed by the binary on the processor itself,

and could then be compared against the voluminous debugging output of the normal (that

is, not BOGUS) SIND.

The GCC compiler itself introduced problems. We were originally using the gcc 2.95

compiler collection which had somewhat buggy 64-bit support. The biggest problems

were with C++ name mangling. In older versions of gcc, symbols defined in .c files or

header files whose implementations were in .c files used normal C linking. That is, a

function defined as void foo() was exported as the symbol foo. In gcc3 and up,

anything touched by a C++ file was made to use C++ linking. C++ linking involves a

technique known as name-mangling, whereby the symbol name has characters appended

or prepended to it that the system uses to extract type information. Therefore a function

foo in a class bar gets mangled to something like ZNKbar1fooEv. This meant that

many of the function interpositions we had created were no longer working when we

upgraded to gcc 3.2 because their symbolic names were mangled beyond recognition. The

way around this was to devise macros to enclose C-style definitions in a way that tells the
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C++ compiler to leave them alone.

The GCC compiler also caused problems with register usage. On Solaris/SPARC sys-

tems, a shared object cannot write to the %g2 or %g3 registers (which are dedicated to

passing values to syscalls). With gcc it is simple enough to specify not to use either global

register; however, it is not possible to tell it to only avoid writes to those registers. This

means that any code we have that explicitly copies values from %g2 or %g3 has to be

compiled separately and then linked in later, which is cumbersome. On a load-store ar-

chitecture, it should be trivial for an assembler to determine whether an expression that

references a register is writing to it or just reading it!

48  



Chapter 7

Using SIND

7.1 Invoking SIND

Because SIND is force-loaded into the running binary’s address space, SIND must be a dy-

namic object. When SIND is finished building, there will be a file named libsind.so in

the directory. To use this, a shell script is provided (run sind). This will set LD PRELOAD

correctly and invoke the supplied binary. For example to run the hello world program, one

would simply type ‘run sind hello world’. There are some caveats, however. Be-

cause SIND uses LD PRELOAD, there are some restrictions. To prevent an attacker from

installing a malicious library in their home directory and causing everyone to interpose

with their dangerous code, Solaris (and other ELF OSs) requires that any setuid program

can only load LD PRELOADed libraries from certain ‘safe’ areas. Under Solaris this can

be configured using the crle program.
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7.2 Extending SIND

The current experimental SIND system is not functional enough to be of much use to the

average user, but because of its progressive open source licensing, SIND can be readily

extended by needy coders. At the moment SIND will only work on 64-bit Solaris/SPARC

system. An effort has been made to make the system capable of running on a 32-bit

platform, but that code has not been tested and is certain to contain numerous bugs. SIND

has also not been rendered self-contained, which is to say that I/O functions and memory

management have not been replaced with local, specialized functions. For programs that

‘play nice’ this isn’t a big problem. But for any advanced application (that may define

its own new operator, for instance) SIND may fail horribly. Therefore SIND’s I/O and

memory needs must be met within SIND. This should not be a particularly difficult task,

however. Many of SIND’s data structures are fixed size and so dynamic memory is rarely

used. In addition, when debugging is disabled, SIND performs no file I/O, and contains

only a few print statements. The current SIND system also has no real threading or multi-

process support. Although when a new process is created (with fork()), SIND should

be copied along, this hasn’t been tested.

For an overview of what functionality is in which files, please consult appendix A.

That appendix also contains details on building SIND.

7.2.1 System-Dependent Code

In SIND terms, the system dependent code is that code that is either OS specific, or ar-

chitecture specific. Basically, that means any code which depends upon low level system

behavior, or has inlined assembly code (for state capture, for instance). In the current

version of SIND, the bootstrapper and the trap handling code (SPARCTrap.cc) are de-

pendent upon both the processor and operating system. The fragment cache is depen-
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dent upon the processor (it processes SPARC code), and the signal handling code (sig-

nal handling.c) needs a system with support for POSIX signals (it handles both signal

and sigaction).

7.2.2 System-Independent Code

The rest of the SIND code is intended to be platform independent (insofar as C or C++

can be). The interpreter (SPARCCPU.cc) is meant to run on both 64- and 32-bit systems

(by emulating a 64-bit datum with a class). SPARCMMU is only dependent upon SIND

running in the same address space as the target process. Much of the rest of the code

is supporting classes for the interpreter (SPARCInstruction, etc) or data structure

classes (AddressHash, etc), and is not specific to any platform. To avoid the annoying

unknown bit-width of int problem, all the code that needs to specify a given bit width

uses the POSIX typing standard (i.e. uint32 t for a 32-bit unsigned int).
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Appendix A

Technical Details

This appendix describes the nitty-gritty details necessary to take the current SIND code

base and build it, or (hopefully) extend or debug it.

A.1 Source Layout and Directory Organization

The base directory contains all the standard GNU files, as well as an out of date config-

uration script. The doc directory contains documents related to SIND, in particular this

thesis and the technical reports written about it. All the code is located in the src di-

rectory. All of the base classes are in src the class definitions are in include and the

implementation files are in src. src also includes a simple makefile for building these

classes. Off of this directory are directories for each architecture. Currently there are only

two PowerPC and SPARC. PowerPC contains Dino Dai Zovi’s beginnings of a PowerPC

interpreter, and SPARC contains all of my SPARC and Solaris specific code. The architec-

ture directories are organized similar to the base class directory, class definitions and other

header files are in include, and the implementations as well as the Makefile are in the

SPARC directory.
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A.2 Where Functionality Resides

In order to get a good handle on the code base it is necessary to create a mapping between

the modules described in the design section and the actual files in the directories.

Include Files

AddressHash.h definition of the AddrHash data structure
bootstrap.h function prototypes for bootstrapping
driver.h definition for driver program
signal handling.h prototypes of internal signal handling functions
signal stuff.h prototypes of superposed signal functions
SPARCCPU.h definition of the SPARCCPU (interpreter) class
SPARCDispatch.h definition of the SPARCDispatch class
SPARCExceptions.h definitions of error conditions in the interpreter
SPARCFPU.h definition of the floating point unit
SPARCFragCache.h definition of the SPARCFragCache class
SPARCInstruction.h the SPARC instruction class
SPARCInstrFmt.h a wrapper for a 32-bit integer to readily

parse it as an instruction
SPARCMMU.h definition of the SPARC MMU class
SPARCRegisters.h definition of registers

(both general purpose and special)
SPARCTrace.h definition of the data structure used to hold traces
SPARCTransformer.h interface class for transformers
SPARCTrap.h definition of trap handling functions

(for syscall manager)

Table A.1: Include files to modules
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Files and Modules

Module File(s)
Bootstrap bootstrap.h, bootstrap.c
Interpreter SPARCCPU.*, SPARCExceptions.h,

SPARCFPU.*,SPARCInstrFmt.h,
SPARCInstruction.h, SPARCRegisters.h

Trap/Syscall Manger SPARCTrap.*
Dispatch SPARCDispatch.*
Transformer anything implementing SPARCTransformer
Memory Manager SPARCMMU.*
Fragment Cache SPARCFragCache.*

Table A.2: modules’ source files

A.3 Compilation and Architecture Support

A.3.1 Makefiles

Compilation is currently managed by a set of Makefiles. Each directory that has com-

pilable source will have its own Makefile. The main one for the experimental system is

the Makefile in the SPARC directory. This Makefile follows the convention of having the

all and clean targets. all will build everything (including files in parent directories)

and link it together to create the SIND shared object. After building there should be a file

named libsind.so in the directory. This is SIND.

A.3.2 Compilation Flags

There are several compilation flags that guide the preprocessing of the SIND source. The

first is SIND ARCH64. If this is defined, then it is assumed that the SIND code is running

on a 64-bit machine and so can use native 64-bit integers. If this is not defined, then
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emulation of 64-bit wide data is done through a class (DoubleWord) using overloaded

operators. The second flag is DEBUG; if this is defined, scores of debugging statements

will be compiled into SIND. This generates voluminous output, and should only be used

for debugging. If not defined, SIND’s printouts will be limited to a few lines of text

when starting up. Also, this means that any extensions made to SIND should respect

this convention and enclose debugging statements in #ifdef DEBUG conditionals. The

next flag of note is TRACING, if defined the interpreter will be compiled with tracing

support, otherwise all code will be executed in the interpreter. This flag was introduced to

allow me to debug interpreter errors even after I had implemented a tracing infrastructure.

Another notable flag is TIMING; if defined, then SIND will time itself and print out the

results. Currently, timing code exists only in the interpreter, and this times the execution

in the main interpreter loop (executeLoop()). Lastly, there’s the BOGUS flag, this

flag should only be set if compiling a BOGUS version of SIND. The bogus version is

used to get a highly accurate snapshot of the machine state for debugging purposes and is

discussed in more detail in section 6.2.

A.3.3 Supported Architectures

All the platform independent code should work on any 64-bit platform, and includes

enough infrastructure that it could readily be made to work on any 32-bit platform. All the

platform dependent code will only work on an UltraSPARC running Solaris2.x and up.
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1. INTRODUCTION

Standardized machine instruction sets provide consistent interfaces between
software and hardware, but they are a double-edged sword. Although they yield
great productivity gains by enabling independent development of hardware and
software, the ubiquity of well-known instructions sets also allows a single at-
tack designed around an exploitable software flaw to gain control of thousands
or millions of systems. Such attacks could be stopped or greatly hindered if each
protected system could be economically destandardized, so that a different at-
tack would have to be created specifically for each new target, using information
that was difficult or impossible for an outsider to obtain. The automatic diver-
sification we explore in this paper is one such destandardization technique.

Many existing defenses against machine code injection attacks block the
known routes by which foreign code is placed into a program’s execution path.
For example, stack defense mechanisms [Chiueh and Hsu 2001; Cowan et al.
1998; Etoh and Yoda 2000, 2001; Forrest et al. 1997; Frantzen and Shuey 2001;
Nebenzahl and Wool 2004; Prasad and Chiueh 2003; Vendicator 2000; Xu et al.
2002] protect return addresses and defeat large classes of buffer overflow at-
tacks. Other mechanisms defend against buffer overflows elsewhere in pro-
gram address space [PaX Team 2003], against alternative overwriting meth-
ods [Cowan et al. 2001], or guard from known vulnerabilities through shared
interfaces [Avijit et al. 2004; Baratloo et al. 2000; Lhee and Chapin 2002; Tsai
and Singh 2001]. Our approach is functionally similar to the PAGEEXEC fea-
ture of PaX [PaX Team 2003], an issue we discuss in Section 6.

Rather than focusing on any particular code injection pathway, a comple-
mentary approach would disrupt the operation of the injected code itself. In this
paper we describe randomized instruction set emulation (RISE), which uses a
machine emulator to produce automatically diversified instruction sets. With
such instruction set diversification, each protected program has a different and
secret instruction set, so that even if a foreign attack code manages to enter
the execution stream, with very high probability the injected code will fail to
execute properly.

In general, if there are many possible instruction sets compared to the num-
ber of protected systems and the chosen instruction set in each case is externally
unobservable, different attacks must be crafted for each protected system and
the cost of developing attacks is greatly increased. In RISE, each byte of pro-
tected program code is scrambled using pseudorandom numbers seeded with
a random key that is unique to each program execution. Using the scrambling
constants it is trivial to recover normal instructions executable on the physical
machine, but without the key it is infeasible to produce even a short code se-
quence that implements any given behavior. Foreign binary code that manages
to reach the emulated execution path will be descrambled without ever having
been correctly scrambled, foiling the attack, and producing pseudorandom code
that will usually crash the protected program.

1.1 Threat Model

The set of attacks that RISE can handle is slightly different from that of many
defense mechanisms, so it is important to identify the RISE threat model clearly.
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Randomized Instruction Set Emulation • 3

Our specific threat model is binary code injection from the network into an exe-
cuting program. This includes many real-world attack mechanisms, but explic-
itly excludes several others, including the category of attacks loosely grouped
under the name “return into libc” [Nergal 2001] which modify data and ad-
dresses so that code already existing in the program is subverted to execute the
attack. These attacks might or might not use code injection as part of the attack.
Most defenses against code injection perform poorly against this category as it
operates at a different level of abstraction; complementary defense techniques
are needed, and have been proposed, such as address obfuscation [Bhatkar et al.
2003; Chew and Song 2002; PaX Team 2003], which hide and/or randomize ex-
isting code locations or interface access points.

The restriction to code injection attacks excludes data only attacks such as
nonhybrid versions of the “return into libc” class mentioned above, while fo-
cusing on binary code excludes attacks such as macro viruses that inject code
written in a higher-level language. Finally, we consider only attacks that arrive
via network communications and therefore we treat the contents of local disks
as trustworthy before an attack has occurred.

In exchange for these limitations, RISE protects against all binary code injec-
tion attacks, regardless of the method by which the machine code is injected. By
defending the code itself, rather than any particular access route into the code,
RISE offers the potential of blocking attacks based on injection mechanisms
that have yet to be discovered or revealed.

This threat model is related to, but distinct from, other models used to char-
acterize buffer overflow attacks [Cowan et al. 2000, 2001]. It includes any at-
tack in which native code is injected into a running binary, even by means that
are not obviously buffer overflows, such as misallocated malloc headers, footer
tags [Security Focus 2003; Xu et al. 2003], and format string attacks that write a
byte to arbitrary memory locations [Gera and Riq 2002; Newsham 2000]. RISE
protects against injected code arriving by any of these methods. On the other
hand, other defense mechanisms, such as the address obfuscation mentioned
above, can prevent attacks that are specifically excluded from our code injection
threat model.

We envision the relatively general code-based mechanism of RISE being used
in conjunction with data and address diversification-based mechanisms to pro-
vide deeper, more principled, and more robust defenses against both known and
unknown attacks.

1.2 Overview

This paper describes a proof-of-concept RISE system, which builds randomized
instruction set support into a version of the Valgrind IA32-to-IA32 binary trans-
lator [Nethercote and Seward 2003; Seward and Nethercote 2004]. Section 2
describes a randomizing loader for Valgrind that scrambles code sequences
loaded into emulator memory from the local disk using a hidden random key.
Then, during Valgrind’s emulated instruction fetch cycle, fetched instructions
are unscrambled, yielding the unaltered IA32 machine code sequences of the
protected application. The RISE design makes few demands on the supporting
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4 • E. G. Barrantes et al.

emulator and could be easily ported to any binary-to-binary translator for which
source code is available.

Section 3 reports empirical tests of the prototype and confirms that RISE
successfully disrupts a range of actual code injection attacks against otherwise
vulnerable applications. In addition, it highlights the extreme fragility of typical
attacks and comments on performance issues.

A basic property of the RISE defense mechanism is that if an attack manages
to inject code by any means, essentially random machine instructions will be
executed. Section 4 investigates the likely effects of such an execution in several
different execution contexts. Experimental results are reported and theoretical
analyses are given for two different architectures. There is always a possibility
that random bits could create valid instructions and instruction sequences. We
present empirical data suggesting that the majority of random code sequences
will produce an address fault or illegal instruction quickly, causing the program
to abort. Most of the remaining cases throw the program into a loop, effectively
stopping the attack. Either way, an attempted takeover is downgraded into a
denial-of-service attack against the exploitable program.

Unlike compiled binary code, which uses only a well-defined and often rela-
tively small selection of instructions, random code is unconstrained. The behav-
ior of random code execution in the IA32 architecture can involve the effects
of undocumented instructions and whatever instruction set extensions (e.g.,
MMX, SSE, and SSE2) are present, as well as the effects of random branch
offsets combined with multibyte, variable-length instructions. Although those
characteristics complicate a tight theoretical analysis of random bit executions
on the IA32, models for more constrained instruction set architectures, such as
the PowerPC, lead to a closer fit to the observed data.

Section 6 summarizes related work, Section 7 discusses some of the impli-
cations and potential vulnerabilities of the RISE approach, and Section 8 con-
cludes the paper.

2. TECHNICAL APPROACH AND IMPLEMENTATION

This section describes the prototype implementation of RISE using Valgrind
[Nethercote and Seward 2003; Seward and Nethercote 2004] for the Intel IA32
architecture. Our strategy is to provide each program copy its own unique and
private instruction set. To do this, we consider what is the most appropriate
machine abstraction level, how to scramble and descramble instructions, when
to apply the randomization and when to descramble, and how to protect in-
terpreter data. We also describe idiosyncrasies of Valgrind that affected the
implementation.

2.1 Machine Abstraction Level

The native instruction set of a machine is a promising computational level for
automated diversification because all computer functionality can be expressed
in machine code. This makes the machine-code level desirable to attack and
protect. However, automated diversification is feasible at higher levels of ab-
straction, although there are important constraints on suitable candidates.
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Language diversification seems most promising for languages that are in-
terpreted or executed directly by a virtual machine. Randomizing source code
for a compiled language would protect only against injections at compile time.
An additional constraint is the possibility of crafting attacks at the selected
language level. Although it is difficult to evaluate this criterion in the abstract,
we could simply choose languages for which those attacks have already been
shown to exist, such as Java, Perl, and SQL [Harper 2002]. And in fact, propos-
als for diversifying these higher levels have been made [Boyd and Keromytis
2004; Kc et al. 2003]. Macro languages provide another example of a level that
could be diversified to defeat macro viruses.

Finally, it is necessary to have a clear trust boundary between internal and
external programs so that it is easy to decide which programs should be random-
ized. The majority of programs should be internal to the trust boundary, or the
overhead of deciding what is trusted and untrusted will become too high. This
requirement eliminates most web-client scripting languages such as Javascript
because a user decision about trust would be needed every time a Javascript
program was going to be executed on a client. A native instruction set, with a
network-based threat model, provides a clear trust boundary, as all legitimately
executing machine code is stored on a local disk.

An obvious drawback of native instruction sets is that they are tradition-
ally physically encoded and not readily modifiable. RISE therefore operates
at an intermediate level, using software that performs binary-to-binary code
translation. The performance impact of such tools can be minimal [Bala et al.
2000; Bruening et al. 2001]. Indeed, binary-to-binary translators sometimes
improve performance compared to running the programs directly on the native
hardware [Bala et al. 2000].

For ease of research and dissemination, we selected the open-source emula-
tor, Valgrind, for our prototype. Although Valgrind is described primarily as a
tool for detecting memory leaks and other program errors, it contains a com-
plete IA32-to-IA32 binary translator. The primary drawback of Valgrind is that
it is very slow, largely owing to its approach of translating the IA32 code into
an intermediate representation and its extensive error checking. However, the
additional slowdown imposed by adding RISE to Valgrind is modest, and we are
optimistic that porting RISE to a more performance-oriented emulator would
yield a fully practical code defense.

2.2 Instruction Set Randomization

Instruction set randomization could be as radical as developing a new set of
opcodes, instruction layouts, and a key-based toolchain capable of generating
the randomized binary code. And, it could take place at many points in the
compilation-to-execution spectrum. Although performing randomization early
could help distinguish code from data, it would require a full compilation envi-
ronment on every machine, and recompiled randomized programs would likely
have one fixed key indefinitely. RISE randomizes as late as possible in the
process, scrambling each byte of the trusted code as it is loaded into the emula-
tor, and then unscrambling it before execution. Deferring the randomization to
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6 • E. G. Barrantes et al.

load time makes it possible to scramble and load existing files in the executable
and linking format (ELF) [Tool Interface Standards Committee . 1995] directly,
without recompilation or source code, provided we can reliably distinguish code
from data in the ELF file format.

The unscrambling process needs to be fast, and the scrambling process must
be as hard as possible for an outsider to deduce. Our current default approach
is to generate at load time a pseudorandom sequence the length of the over-
all program text using the Linux /dev/urandom device [Tso 1998], which uses a
secret pool of true randomness to seed a pseudorandom stream generated by
feedback through SHA1 hashing. The resulting bytes are simply XORed with
the instruction bytes to scramble and unscramble them. In addition, it is pos-
sible to specify the length of the key, and a smaller key can be tiled over the
process code. If the underlying truly random key is long enough, and as long
as it is infeasible to invert SHA1 [Schneier 1996], we can be confident that
an attacker cannot break the entire sequence. The security of this encoding is
discussed further in Section 7.

2.3 Design Decisions

Two important aspects of the RISE implementation are how it handles shared
libraries and how it protects the plaintext executable.

Much of the code executed by modern programs resides in shared libraries.
This form of code sharing can significantly reduce the effect of the diversifi-
cation, as processes must use the same instruction set as the libraries they
require. When our load-time randomization mechanism writes to memory that
belongs to shared objects, the operating system does a copy-on-write, and a pri-
vate copy of the scrambled code is stored in the virtual memory of the process.
This significantly increases memory requirements, but increases interprocess
diversity and avoids having the plaintext code mapped in the protected pro-
cesses’ memory. This is strictly a design decision, however. If the designer is
willing to sacrifice some security, it can be arranged that processes using RISE
share library keys, and so library duplication could be avoided.

Protecting the plaintext instructions inside Valgrind is a second concern.
As Valgrind simulates the operation of the CPU, during the fetch cycle when
the next byte(s) are read from program memory, RISE intercepts the bytes and
unscrambles them; the scrambled code in memory is never modified. Eventually,
however, a plaintext piece of the program (semantically equivalent to the block
of code just read) is written to Valgrind’s cache. From a security point of view, it
would be best to separate the RISE address space completely from the protected
program address space, so that the plaintext is inaccessible from the program,
but as a practical matter this would slow down emulator data accesses to an
extreme and unacceptable degree. For efficiency, the interpreter is best located
in the same address space as the target binary, but of course this introduces
some security concerns. A RISE-aware attacker could aim to inject code into a
RISE data area, rather than that of the vulnerable program. This is a problem
because the cache cannot be encrypted. To protect the cache its pages are kept
as read-and-execute only. When a new translated basic block is ready to be
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written to the cache, we mark the affected pages as writable, execute the write
action, and restore the pages to their original nonwritable permissions. A more
principled solution would be to randomize the location of the cache and the
fragments inside it, a possibility for future implementations of RISE.

2.4 Implementation Issues

Our current implementation does not handle self-modifying code, but it has
a primitive implementation of an interface to support dynamically generated
code. We consider arbitrary self-modifying code as an undesirable program-
ming practice and agree with Valgrind’s model of not allowing it. However, it is
desirable to support legitimate dynamically generated code, and we intend to
provide eventually a complete interface for this purpose.

An emulator needs to create a clear boundary between itself and the process
to be emulated. In particular, the emulator should not use the same shared li-
braries as the process being emulated. Valgrind deals with this issue by adding
its own implementation of all library functions it uses, with a local modified
name for example, VGplain printf instead of printf. However, we discovered
that Valgrind occasionally jumped into the target binary to execute low-level
functions (e.g., umoddi and udivdi). When that happened, the processor at-
tempted to execute instructions that had been scrambled for the emulated pro-
cess, causing Valgrind to abort. Although this was irritating, it did demonstrate
the robustness of the RISE approach in that these latent boundary crossings
were immediately detected. We worked around these dangling unresolved refer-
ences by adding more local functions to Valgrind and renaming affected symbols
with local names (e.g., rise umoddi instead of “%” (the modulo operator)).

A more subtle problem arises because the IA32 does not impose any data and
code separation requirement, and some compilers insert dispatch tables directly
in the code. In those cases, the addresses in such internal tables are scrambled
at load time (because they are in a code section), but are not descrambled at
execution time because they are read as data. Although this does not cause
an illegal operation, it causes the emulated code to jump to a random address
and fail inappropriately. At interpretation time, RISE looks for code sequences
that are typical for jump-table referencing and adds machine code to check for
in-code references into the block written to the cache. If an in-code reference
is detected when the block is executing, our instrumentation descrambles the
data that was retrieved and passes it in the clear to the next (real) instruction in
the block. This scheme could be extended to deal with the general case of using
code as data by instrumenting every dereference to check for in-code references.
However, this would be computationally expensive, so we have not implemented
it in the current prototype. Code is rarely used as data in legitimate programs
except in the case of virtual machines, which we address separately.

An additional difficulty was discovered with Valgrind itself. The thread sup-
port implementation and the memory inspection capabilities require Valgrind
to emulate itself at certain moments. To avoid infinite emulation regress, it has
a special workaround in its code to execute some of its own functions natively
during this self-emulation. We handled this by detecting Valgrind’s own address
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ranges and treating them as special cases. This issue is specific to Valgrind, and
we expect not to encounter it in other emulators.

3. EFFICACY AND PERFORMANCE OF RISE

The results reported in this section were obtained using the RISE prototype,
available under the GPL from http://cs.unm.edu/~immsec. We have tested RISE’s
ability to run programs successfully under normal conditions and its ability to
disrupt a variety of machine code injection attacks. The attack set contained
20 synthetic and 15 real attacks.

The synthetic attacks were obtained from two sources. Two attacks, pub-
lished by Fayolle and Glaume [2002], create a vulnerable buffer—in one case
on the heap and in the other case on the stack—and inject shellcode into it.
The remaining 18 attacks were executed with the attack toolkit provided by
Wilander and Kamkar and correspond to their classification of possible buffer
overflow attacks [Wilander and Kamkar 2003] according to technique (direct or
pointer redirection), type of location (stack, heap, BSS, or data segment), and
attack target (return address, old base pointer, function pointer, and longjump
buffer). Without RISE, either directly on the processor or using Valgrind, all of
these attacks successfully spawn a shell. Using RISE, the attacks are stopped.

The real attacks were launched from the CORE impact attack toolkit [CORE
Security 2004]. We selected 15 attacks that satisfied the following requirements
of our threat model and the chosen emulator: the attack is launched from a
remote site; the attack injects binary code at some point in its execution; and,
the attack succeeds on a Linux OS. Because Valgrind runs under Linux; we
focused on Linux distributions, reporting data from Mandrake 7.2 and versions
of RedHat from 6.2 to 9.

3.1 Results

All real (nonsynthetic) attacks were tested on the vulnerable applications before
retesting with RISE. All of them were successful against the vulnerable services
without RISE, and they were all defeated by RISE (Table I).

Based on the advisories issued by CERT in the period between 1999 and
2003, Xu et al. [2003] classify vulnerabilities that can inject binary code into
a running process according to the method used to modify the execution flow:
buffer overflows, format string vulnerabilities, malloc/free, and integer manip-
ulation errors. Additionally, the injected code can be placed in different sections
of the process (stack, heap, data, BSS). The main value of RISE is its impervi-
ousness to the entry method and/or location of the attack code, as long as the
attack itself is expressed as binary code. This is illustrated by the diversity of
vulnerability types and shellcode locations used in the real attacks (columns 3
and 4 of Table I).

The available synthetic attacks are less diverse in terms of vulnerability
type. They are all buffer overflows. However, they do have attack code location
variety (stack, heap, and data), and more importantly, they have controlled
diversity of corrupted code address types (return address, old base pointer,
function pointer, and longjump buffer as either local variable or parameter),
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Table I. Results of Attacks Against Real Applications Executed under RISE

Linux Location of Stopped by
Attack Distribution Vulnerability Injected Code RISE
Apache OpenSSL SSLv2 RedHat 7.0 & 7.2 Buffer overflow Heap

√
and malloc/free

Apache mod php RedHat 7.2 Buffer overflow Heap
√

Bind NXT RedHat 6.2 Buffer overflow Stack
√

Bind TSIG RedHat 6.2 Buffer overflow Stack
√

CVS flag insertion RedHat 7.2 & 7.3 Malloc/free Heap
√

heap exploit
CVS pserver double free RedHat 7.3 Malloc/Free Heap

√
PoPToP Negative Read RedHat 9 Integer error Heap

√
ProFTPD xlate ascii RedHat 9 Buffer overflow Heap

√
write off-by-two

rpc.statd format string RedHat 6.2 Format string GOT
√

SAMBA nttrans RedHat 7.2 Buffer overflow Heap
√

SAMBA trans2 RedHat 7.2 Buffer overflow Stack
√

SSH integer overflow Mandrake 7.2 Integer error Stack
√

sendmail crackaddr RedHat 7.3 Buffer overflow Heap
√

wuftpd format string RedHat 6.2–7.3 Format string Stack
√

wuftpd glob “˜{” RedHat 6.2–7.3 Buffer overflow Heap
√

Column 1 gives the exploit name (and implicitly the service against which it was targeted).
The vulnerability type and attack code (shellcode) locations are included (columns 3 and 4, respectively).
The result of the attack is given in column 5.

and offer either direct or indirect execution flow hijacking (see Wilander and
Kamkar [2003]). All of Wilander’s attacks have the shellcode located in the
data section. Both of Fayolle and Glaume’s exploits use direct return address
pointer corruption. The stack overflow injects the shellcode on the stack, and
the heap overflow locates the attack code on the heap. All synthetic attacks
are successful (spawn a shell) when running natively on the processor or over
unmodified Valgrind. All of them are stopped by RISE (column 5 of Table II).

When we originally tested real attacks and analyzed the logs generated by
RISE, we were surprised to find that nine of them failed without ever executing
the injected attack code. Further examination revealed that this was due to
various issues with Valgrind itself, which have been remedied in later versions.
The current RISE implementation in Valgrind 2.0.0 does not have this behavior.
All attacks (real and synthetic) are able to succeed when the attacked program
runs over Valgrind, just as they do when running natively on the processor.

These results confirm that we successfully implemented RISE and that a ran-
domized instruction set prevents injected machine code from executing, without
the need for any knowledge about how or where the code was inserted in process
space.

3.2 Performance

Being emulation based, RISE introduces execution costs that affect application
performance. For a proof-of-concept prototype, correctness and defensive power
were our primary concerns, rather than minimizing resource overhead. In this
section, we describe the principal performance costs of the RISE approach,
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Table II. Results of the Execution of Synthetic Attacks under RISE

Type of Shellcode Number of �= Stopped by
Overflow Location Exploit Origin Pointer Types RISE
Stack direct Data Wilander and Kamkar [2003] 6 6 (100%)
Data direct Data Wilander and Kamkar [2003] 2 2 (100%)
Stack indirect Data Wilander and Kamkar [2003] 6 6 (100%)
Data indirect Data Wilander and Kamkar [2003] 4 4 (100%)
Stack direct Stack Fayolle and Glaume [2002] 1 1 (100%)
Stack direct Heap Fayolle and Glaume [2002] 1 1 (100%)

Type of overflow (column 1) denotes the location of the overflowed buffer (stack, heap or data) and the type
of corruption executed: direct modifies a code pointer during the overflow (such as the return address), and
indirect modifies a data pointer that eventually is used to modify a code pointer.
Shellcode location (column 2) indicates the segment where the actual malicious code was stored.
Exploit origin (column 3) gives the paper from which the attacks were taken.
The number of pointer types (column 4) defines the number of different attacks that were tried by varying
the type of pointer that was overflowed.
Column 5 gives the number of different attacks in each class that were stopped by RISE.

which include a once-only time cost for code randomization during loading,
time for derandomization while the process executes, and space overheads.

Although in the following we assume an all-software implementation, RISE
could also be implemented with hardware support, in which case we would
expect much better performance because the coding and decoding could be
performed directly in registers rather than executing two different memory
accesses for each fetch.

The size of each RISE-protected process is increased because it must have its
own copy of any library it uses. Moreover, the larger size is as much as doubled
to provide space for the randomization mask.1

A software RISE uses dynamic binary translation, and pays a runtime
penalty for this translation. Valgrind amortizes interpretation cost by stor-
ing translations in a cache, which allows native-speed execution of previously
interpreted blocks.

Valgrind is much slower than binary translators [Bala et al. 2000; Bruening
et al. 2001] because it converts the IA32 instruction stream into an intermediate
representation before creating the code fragment. However, we will give some
evidence that long-running, server-class processes can execute at reasonable
speeds and these are precisely the ones for which RISE is most needed.

As an example of this effect, Table III provides one data point about the
long-term runtime costs of using RISE, using the Apache web server in the face
of a variety of nonattack workloads. Classes 0 to 3, as defined by SPEC Inc.
[1999], refer to the size of the files that are used in the workload mix. Class 0
is the least I/O intensive (files are less than 1 KB long), and class 3 is the one
that uses the most I/O (files up to 1000 KB long). As expected, on I/O bound
mixes, the throughput of Apache running over RISE is closer to Apache running

1A RISE command-line switch controls the length of the mask, which is then tiled to cover the pro-
gram. A 1000-byte mask, for example, would be a negligible cost for mask space, and very probably
would provide adequate defense. In principle, however, it might open a within-run vulnerability
owing to key reuse.
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Randomized Instruction Set Emulation • 11

Table III. Comparison of the Average Time Per Operation between Native
Execution of Apache and Apache over RISE

Native Execution Execution over RISE RISE/
Mix Type Mean (ms) Std. Dev. Mean (ms) Std. Dev. Native
Class 0 177.32 422.22 511.73 1,067.79 2.88
Class 1 308.76 482.31 597.11 1,047.23 1.93
Class 2 1,230.75 624.58 1,535.24 1,173.57 1.25
Class 3 10,517.26 3,966.24 11,015.74 4,380.26 1.05
Total 493.80 1,233.56 802.63 1,581.50 1.62

Presented times were obtained from the second iteration in a standard SPECweb99
configuration (300 s warm up and 1200 s execution).

directly on the processor.2 Table III shows that the RISE prototype slows down
by a factor of no more than 3, and sometimes by as little as 5%, compared with
native execution, as observed by the client. These results should not be taken
as a characterization of RISE’s performance, but as evidence that cache-driven
amortization and large I/O and network overheads make the CPU performance
hit of emulation just one (and possibly not the main) factor in evaluating the
performance of this scheme.

By contrast, short interactive jobs are more challenging for RISE perfor-
mance, as there is little time to amortize mask generation and cache filling.
For example, we measured a slowdown factor of about 16 end-to-end when
RISE protecting all the processes invoked to make this paper from LATEX source.

Results of the Dynamo project suggest that a custom-built dynamic binary
translator can have much lower overheads than Valgrind, suggesting that a
commercial-grade RISE would be fast enough for widespread use; in long-
running contexts where performance is less critical, even our proof-of-concept
prototype might be practical.

4. RISE SAFETY: EXPERIMENTS

Code diversification techniques such as RISE rely on the assumption that ran-
dom bytes of code are highly unlikely to execute successfully. When binary
code is injected by an attacker and executes, it is first derandomized by RISE.
Because the attack code was never prerandomized, the effect of derandomizing
is to transform the attack code into a random byte string. This is invisible to
the interpretation engine, which will attempt to translate, and possibly exe-
cute, the string. If the code executes at all, it clearly will not have the effect
intended by the attacker. However, there is some chance that the random bytes
might correspond to an executable sequence, and an even smaller chance that
the executed sequence of random bytes could cause damage. In this section,
we measure the likelihood of these events under several different assumptions,
and in the following section we develop theoretical estimates.

Our approach is to identify the possible actions that randomly formed in-
structions in a sequence could perform and then to calculate the probabilities

2The large standard deviations are typical of SPECweb99, as web server benchmarks have to model
long-tailed distributions of request sizes [Nahum 2002; SPEC Inc. 1999].
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12 • E. G. Barrantes et al.

for these different events. There are several broad classes of events that we con-
sider: illegal instructions that lead to an error signal, valid execution sequences
that lead to an infinite loop or a branch into valid code, and other kinds of er-
rors. There are several subtle complications involved in the calculations, and
in some cases we make simplifying assumptions. The simplifications lead to a
conservative estimate of the risk of executing random byte sequences.

4.1 Possible Behaviors of Random Byte Sequences

First, we characterize the possible events associated with a generic processor
or emulator attempting to execute a random symbol. We use the term symbol
to refer to a potential execution unit, because a symbol’s length in bytes varies
across different architectures. For example, instruction length in the PowerPC
architecture is exactly 4 bytes and in the IA32 it can vary between 1 and 17
bytes. Thus, we adopt the following definitions:

(1) A symbol is a string of l bytes, which may or may not belong to the in-
struction set. In a RISC architecture, the string will always be of the same
length, while for CISC it will be of variable length.

(2) An instruction is a symbol that belongs to the instruction set.

In RISE there is no explicit recognition of an attack, and success is measured
by how quickly and safely the attacked process is terminated. Process termi-
nation occurs when an error condition is generated by the execution of random
symbols. Thus, we are interested in the following questions:

(1) How soon will the process crash after it begins executing random symbols?
(Ideally, in the first symbol.)

(2) What is the probability that an execution of random bytes will branch to
valid code or enter an infinite loop (escape)? (Ideally, 0.)

Figure 1 illustrates the possible outcomes of executing a single random sym-
bol. There are three classes of outcome: an error that generates a signal, a
branch into executable memory in the process space that does not terminate in
an error signal (which we call escape), and the simple execution of the symbol
with the program pointer moving to the next symbol in the sequence. Graph
traversal always begins in the start state, and proceeds until a terminating
node is reached (memory error signal, instruction-specific error signal, escape,
or start).

The term crash refers to any error signal (the states labeled invalid opcode,
specific error signal, and memory error signal in Figure 1). Error signals do
not necessarily cause process termination due to error, because the process
could have defined handlers for some of the error signals. We assume, however,
that protected processes have reasonable signal handlers, which terminate the
process after receiving such a signal. We include this outcome in the event
crash.

The term escape describes a branch from the sequential flow of execution
inside the random code sequence to any executable memory location. This event
occurs when the instruction pointer (IP) is modified by random instructions to
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Randomized Instruction Set Emulation • 13

Fig. 1. State diagram for random code execution. The graph depicts the possible outcomes of
executing a single random symbol. For variable-length instruction sets; the start state represents
the reading of bytes until a nonambiguous decision about the identity of the symbol can be made.

point either to a location inside the executable code of the process, or to a location
in a data section marked as executable even if it does not typically contain code.

An error signal is generated when the processor attempts to decode or execute
a random symbol in the following cases:

(1) Illegal instruction: The symbol has no further ambiguity and it does not
correspond to a defined instruction. The persymbol probability of this event
depends solely on the density of the instruction set. An illegal instruction is
signaled for undefined opcodes, illegal combinations of opcode and operand
specifications, reserved opcodes, and opcodes undefined for a particular
configuration (e.g., a 64-bit instruction on a 32-bit implementation of the
PowerPC architecture).

(2) Illegal read/write: The instruction is legal, but it attempts to access a mem-
ory page to which it does not have the required operation privileges, or the
page is outside the process’ virtual memory.

(3) Operation error: Execution fails because the process state has not been
properly prepared for the instruction; for example, division by 0, memory
errors during a string operation, accessing an invalid port, or invoking a
nonexistent interrupt.

(4) Illegal branch: The instruction is of the control transfer type and attempts
to branch into a nonexecutable or nonallocated area.

(5) Operation not permitted: A legal instruction fails because the rights of the
owner process do not allow its execution, for example, an attempt to use a
privileged instruction in user mode.

There are several complications associated with branch instructions, depend-
ing on the target address of the branch. We assume that the only dangerous
class of branch is a correctly invoked system call. The probability of randomly
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14 • E. G. Barrantes et al.

invoking a system call in Linux is 1
256 × 1

256 ≈ 1.52 × 10−5 for IA32, and at most
1

232 ≈ 2.33×10−10 for the 32-bit PowerPC. This is without adding the restriction
that the arguments be reasonable. Alternatively, a process failure could remain
hidden from an external observer, and we will see that this event is more likely.

A branch into the executable code of the process (ignoring alignment issues)
will likely result in the execution of at least some instructions, and will perhaps
lead to an infinite loop. This is an undesirable event because it hides the at-
tack attempt even if it does not damage permanent data structures. We model
successful branches into executable areas (random or nonrandom) as always
leading to the escape state in Figure 1. This conservative assumption allows
us to estimate how many attack instances will not be immediately detected.
These “escapes” do not execute hostile code. They are simply attack instances
that are likely not to be immediately observed by an external process monitor.
The probability of a branch resulting in a crash or an escape depends at least
in part on the size of the executing process, and this quantity is a parameter in
our calculations.

Different types of branches have different probabilities of reaching valid code.
For example, if a branch has the destination specified as a full address constant
(immediate) in the instruction itself, it will be randomized, and the probability
of landing in valid code will depend only on the density of valid code in the total
address space, which tends to be low. A return takes the branching address
from the current stack pointer, which has a high probability of pointing to a
real-process return address.

We model these many possibilities by dividing memory accesses, for both
branch and nonbranch instructions into two broad classes:

(1) Process-state dominated: When the randomized exploit begins executing,
the only part of the process that has been altered is the memory that holds
the attack code. Most of the process state (e.g., the contents of the regis-
ters, data memory, and stack) remains intact and consistent. However, we
do not have good estimates of the probability that using these values from
registers and memory will cause an error. So, we arbitrarily assign proba-
bilities for these values and explore the sensitivity of the system to different
probabilities. Experimentally we know that most memory accesses fail (see
Figure 2).

(2) Immediate dominated: If a branch calculates the target address based on a
full-address size immediate, we can assume that the probability of execution
depends on the memory occupancy of the process, because the immediate
is just another random number generated by the application of the mask
to the attack code.

We use this classification in empirical studies of random code execution
(Section 4.2). These experiments provide evidence that most processes termi-
nate quickly when random code sequences are inserted. We then describe a
theoretical model for the execution of random IA32 and PowerPC instructions
(Section 5), which allows us to validate the experiments and provides a frame-
work for future analysis of other architectures.
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Randomized Instruction Set Emulation • 15

Fig. 2. Executing random blocks on native processors. The plots show the distribution of runs by
type of outcome for (a) IA32 and (b) Power PC. Each color corresponds to a different random block
size (rb): 4, 16, 28, 40, and 52 bytes. The filler is set such that the total process density is 5% of the
possible 232 address space. The experiment was run under the Linux operating system.

4.2 Empirical Testing

We performed two kinds of experiments: (1) execution of random blocks of bytes
on native processors, and (2) execution of real attacks in RISE on IA32.

4.2.1 Executing Blocks of Random Code. We wrote a simple C program
that executes blocks of random bytes. The block of random bytes simulates a
randomized exploit running under RISE. We then tested the program for differ-
ent block sizes (the “exploit”) and different degrees of process space occupancy.
The program allocates a prespecified amount of memory (determined by the
filler size parameter) and fills it with the machine code for no operation (NOP).
The block of random bytes is positioned in the middle of the filler memory.

Figure 2 depicts the observed frequency of the events defined in Section 4.1.
There is a preponderance of memory access errors in both architectures,
although the less dense PowerPC has an almost equal frequency of illegal
instructions. Illegal instructions occur infrequently in the IA32 case. In both
architectures, about one-third of legal branch instructions fail because of an
invalid memory address, and two-thirds manage to execute the branch. Condi-
tional branches form the majority of branch instructions in most architectures,
and these branches have a high probability of executing because of their very
short relative offsets.

Because execution probabilities could be affected by the memory occupancy
of the process, we tested different process memory sizes. The process sizes used
are expressed as fractions of the total possible 232 address space (Table IV).

Each execution takes place inside GDB (the GNU debugger), single stepping
until either a signal occurs or more than 100 instructions have been executed.
We collect information about type of instruction, addresses, and types of signals
during the run. We ran this scenario with 10,000 different seeds, five random
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16 • E. G. Barrantes et al.

Table IV. Process Memory Densities (Relative to Process Size)

Process Memory Density 0.0002956 0.0036093 0.0102365 0.0234910 0.0500000
(as a fraction of 232 bytes)

Values are expressed as fractions of the total possible 232 address space. They are based on observed process
memory used in two busy IA32 Linux systems over a period of two days.

Fig. 3. Probability that random code escapes when executed for different block sizes (the x-axis)
for (a) IA32 and (b) Power PC. Block size is the length of the sequence of random bytes inserted
into the process. Each set of connected points represents a different memory density (q). Solid lines
represent the fraction of runs that escaped under our definition of escape, and dotted lines show the
fraction of “true” escaped executions (those that did not fail after escaping from the exploit area).

block sizes (4, 8, 24, 40, and 56 bytes), and five total process densities (see
Table IV), both for the PowerPC and the IA32.

Figure 3 plots the fraction of runs that escaped according to our definition
of escape (given in Section 4.1) for different memory densities. An execution
was counted as an escape if a jump was executed and did not fail immediately
(that is, it jumped to an executable section of the code). In addition, it shows
the proportion of escapes that did not crash within a few bytes of the exploit
area (“true” escapes: for example when the execution is trapped into an infinite
loop). Escapes that continued executing for more than 100 instructions were
terminated. The figure shows that for realistic block sizes (over 45 bytes), the
proportion of true escapes is under 10% (IA32). In the Power PC case, although
the fraction of escaped runs is smaller, most of the escapes do not fail afterwards,
so the curves overlap.

A second observation (not shown) is that memory density has a negligible
effect on the probability of escape, even though we created an environment that
maximizes successful escapes. This is likely because the process sizes are still
relatively small compared to the total address space and because only a minor-
ity of memory accesses are affected by this density (those that are immediate
dominated).
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Randomized Instruction Set Emulation • 17

Fig. 4. Proportion of runs that fail after exactly n instructions, with memory density 0.05, for (a)
IA32 and (b) PowerPC. On the right, the proportion of escaped versus crashed runs is presented for
comparison. Each instruction length bar is composed by five sub-bars, one for each random block
(simulated attack) sizes 4, 16, 28, 40, and 52 bytes, left to right.

Figure 4 shows the proportion of failed runs that die after executing exactly
n instructions. On the right side of the graph, the proportion of escaped versus
failed runs is shown for comparison. Each instruction length bar comprises five
subbars, one for each simulated attack size. We plot them all to show that the
size of the attack has almost no effect on the number of instructions executed,
except for very small sizes. On the IA32, more than 90% of all failed runs died
after executing at most 6 instructions and in no case did the execution continue
for more than 23 instructions. The effect is even more dramatic on the Power
PC, where 90% of all failed runs executed for fewer than 3 instructions, and the
longest failed run executed only 10 instructions.

4.2.2 Executing Real Attacks under RISE. We ran several vulnerable ap-
plications under RISE and attacked them repeatedly over the network, mea-
suring how long it took them to fail. We also tested the two synthetic attacks
from Fayolle and Glaume [2002]. In this case the attack and the exploit are
in the same program, so we ran them in RISE for 10,000 times each, collect-
ing output from RISE. Table V summarizes the results of these experiments.
The real attacks fail within an average of two to three instructions (column 4).
Column 3 shows how many attack instances we ran (each with a different ran-
dom seed for masking) to compute the average. As column 5 shows, most attack
instances crashed instead of escaping. The synthetic attacks averaged just un-
der two instructions before process failure. No execution of any of the attacks
was able to spawn a shell.
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Table V. Survival Time in Executed Instructions for Attack Codes in
Real-Applications Running under RISE

No. of Avg. no. Crashed Before
Attack Name Application Attacks of Insns. Escape (%)
Named NXT Bind 8.2.1-7 101 2.24 85.14

resource
record overflow
rpc.statd format nfs-utils 0.1.6-2 102 2.06 85.29

string
Samba trans2 smbd 2.2.1a 81 3.13 73.00

exploit
Synthetic heap N/A 10,131 1.98 93.93

exploit
Synthetic stack N/A 10,017 1.98 93.30

exploit

Column 4 gives the average number of instructions executed before failure (for instances
that did not “escape”).
Column 5 summarizes the percentage of runs crashing (instead of “escaping”).

Within the RISE approach, one could avoid the problem of accidentally viable
code by mapping to a larger instruction set. The size could be tuned to reflect the
desired percentage of incorrect unscramblings that will likely lead immediately
to an illegal instruction.

5. RISE SAFETY: THEORETICAL ANALYSIS

This section develops theoretical estimates of RISE safety and compares them
with the experiments reported in the previous section. A theoretical analysis is
important for several reasons. Diversified code techniques of various sorts and
at various levels are likely to become more common. We need to understand
exactly how much protection they confer. In addition, it will be helpful to pre-
dict the effect of code diversity on new architectures before they are built. For
example, analysis allows us to predict how much increase in safety could be
achieved by expanding the size of the instruction space by a fixed amount.

In the case of a variable-size instruction set, such as the IA32, we compute the
aggregate probabilities using a Markov chain. In the case of a uniform-length
instruction set, such as the PowerPC, we can compute the probabilities directly.

5.1 IA32 Instruction Set

For the IA32 instruction set, which is a CISC architecture, we use the published
instruction set specification [Intel Corporation 2004] to build a Markov chain
used to calculate the escape probability of a sequence of m random bytes (with
byte-length b = 8 bits). Our analysis is based on the graph of event categories
shown in Figure 1, but it is specialized to include the byte-to-byte symbol
recognition transitions. A transition is defined as the reading of a byte by the
processor, and the states describe either specific positions within instructions
or exceptions. Appendix A provides the specifics of this particular Markov
chain encoding.

Apart from the complexity of encoding the large and diverse IA32 instruction
set, the major difficulty in the model is the decision of what to do when a symbol
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Randomized Instruction Set Emulation • 19

Fig. 5. Theoretical analysis of IA32 escape probability: The x-axis is the number of bytes in the
random sequence, and the y-axis is the probability of escaping from a random string of m bytes. Each
connected set of plotted points corresponds to one assumed probability of successfully executing
a process-state-dominated memory access (ps), with either strict or loose criterion of escape. The
memory density is fixed at 0.05. For comparison with empirical data, the dashed line with triangles
marks the observed average frequency of successful jumps (data taken from Figure 3 for the IA32
and memory density q = 0.05).

crosses the boundary of the exploit area. It is conceivable that the result of the
interpretation is still ambiguous at the byte that crosses the border. However,
the model needs to decide what happens to the execution at that moment. We
model this situation using both extremes: A loose escape declares the execution
as an escape if the bytes interpreted up to the crossing point have not caused
a crash; a strict escape declares that the execution of the partial instruction
ends in crash. A characterization of the states in terms of the Markov chain is
presented in Appendix A.

Figure 5 shows the probability of escape as a function of increasing sequence
length for both loose and strict criteria of escape for a fixed memory density
(0.05), and for different probabilities of a process state-dominated memory
access to execute. The plot reveals several interesting phenomena.

First, the plots converge to a steady state quickly—in less than 20 bytes.
This is consistent with the empirical data. Notably, the probability of escape
converges to a nonzero value. This means that independently of exploit or pro-
cess size, there will always be a nonzero probability that a sequence of random
code will escape.

A second observation revealed by the plot is the relatively small difference
between our loose and strict criteria for escape. The main difference between
both cases is how to interpret the last instruction in the sequence if the string
has not crashed before the exploit border. Not surprisingly, as sequences get
longer, the probability of reaching the last symbol diminishes, so the overall
effect of an ambiguous last instruction in those few cases is respectively smaller.
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Table VI. Partition of Symbols into Disjoint Sets

Set Name Type of Instructions in Set
U Undefined instructions.
P Privileged instructions.
BSR Small offset, relative branch
LD Legal instructions with no memory access and no branching. All branches

require memory access, so LD only contains linear instructions.
LM I Legal no-branch instructions with immediate-dominated memory access.
BM I Legal branch instructions with immediate-dominated memory-access.
LM P Legal no-branch instructions with process-state dominated memory-access.
BM P Legal branch instructions with process-state dominated memory access.

A third observation (data not shown in the figure) is that for different mem-
ory densities, the escape curves are nearly identical. This means that memory
size has almost no effect on the probability of escape at typical process memory
occupancies. In part, this reflects the fact that most jumps use process-state-
dominated memory accesses. In particular, immediate-dominated memory
accesses constitute a very small proportion of the instructions that use memory
(only 4 out of more than 20 types of jumps).

The fourth observation concerns the fact that the first data point in the
empirical run (block size of 4 bytes) differs markedly from all the strict and loose
predicted curves. Both criteria are extreme cases and the observed behavior is
in fact bounded by them. The divergence is most noticeable during the first 10
bytes, as most IA32 instructions have a length between 4 and 10 bytes. As noted
before, the curves for loose and strict converge rapidly as the effect of the last
instruction becomes less important, and so we see a much closer fit with the
predicted behavior after 10 bytes, as the bounds become tighter.

The final observation is that the parameter ps varies less than expected. We
were expecting that the empirical data would have an ever-increasing nega-
tive slope, given that in principle the entropy of the process would increase
as more instructions were executed. Instead, we get a close fit with ps = 0.6
after the first 20 bytes. This supports our approximation to the probability of
execution for process-state dominated instructions, as a constant that can be
determined with system profiling.

5.2 Uniform-Length Instruction Set Model

The uniform-length instruction set is simpler to analyze because it does not
require conditional probabilities on instruction length. Therefore, we can esti-
mate the probabilities directly without resorting to a Markov chain. Our anal-
ysis generalizes to any RISC instruction set, but we use the PowerPC [IBM
2003] as an example.

Let all instructions be of length b bits (usually b = 32). We calculate the
probability of escape from a random string of m symbols r = r1 . . . rm, each of
length b bits (assumed to be drawn from a uniform distribution of 2b possible
symbols). We can partition all possible symbols in disjoint sets with different
execution characteristics. Table VI lists the partition we chose to use. Figure 7
in Appendix B illustrates the partition in terms of the classification of events
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given in Section 4.1. S = U ∪ P ∪ BSR ∪ LD∪ LMI ∪ BMI ∪ LMP ∪ BMP is the set
of all possible symbols that can be formed with b bits. |S| = 2b. The probability
that a symbol s belongs to any given set I (where I can be any one of U , P ,
BSR, LD, LMI, BMI, LMP or BMP) is given by P{s ∈ I} = P (I ) = |I |

2b .
If there are a bits for addressing (and consequently the size of the address

space is 2a); EI is the event that a symbol belonging to set I executes; Mt is the
total memory space allocated to the process; Me is the total executable memory
of the process; and ps is the probability that a memory access dominated by
the processor state succeeds, then the probabilities of successful execution for
instructions in each set are

For illegal and privileged opcodes, P (EU ) = P (EP ) = 0.
For the remaining legal opcodes, P (ELD ) = P (EBSR ) = 1; P (ELMI ) = Mt

2a ;
P (EBM I ) = Me

2a ; P (ELMP ) = ps and P (EBMP ) = ps.

We are interested in the probability of a successful branch (escape) out of a
sequence of n random bytes. Let X n denote the event that an execution escapes
at exactly symbol n. This event requires that n−1 instructions execute without
branching and that the nth instruction branches successfully. In consequence,
P (X n) = (P (L))n−1 P (E), where P (L) = P (LD) + P (LM I )P (ELM I ) + P (LM P )
is the probability that a symbol executes a successful linear instruction, and
P (E) = P (BM I )P (EBMI ) + P (BM P ) + P (BSR) is the probability that a symbol
executes a valid branch.

If X �
n is the event that the execution of a random string r = r1 · · · rn escapes,

its probability P (X �
n) is given by (Appendix B:

P (X �
n) = P (E)

1 − P (L)n+1

1 − P (L)
+ P (L)n

P (X �
n) is plotted in Figure 6 for different values of ps, increasing random code

sizes and a given memory density (0.05 as in the IA32 case). The comparable
data points from our experiments are shown for comparison. We did not plot
results for different memory densities because the difference among the curves
is negligible. The figure shows that the theoretical analysis agrees with our
experimental results. The parameters were calculated from the published doc-
umentation of the PowerPC instruction set [IBM 2003], for the 32-bit case:
b = 32, a = 32, P (LD) ≈ 0.25, P (LM I ) = 0, P (LM P ) ≈ 0.375, P (BM I ) ≈ 0.015,
P (BM P ) ≈ 0.030, P (BSR) ≈ 0.008.

It can be seen that the probability of escape converges to a nonzero value.
For a uniform-length instruction set, this value can be calculated as

lim
n→∞ P (X �

n) = P (E)
1 − P (L)

.

The limit value of P (X �
n) is the lower bound on the probability of a sequence

of length n escaping. It is independent of n, so larger exploit sizes are no more
likely to fail than smaller ones in the long run. It is larger than 0 for any
architecture in which the probability of successful execution of a jump to a
random location is larger than 0.
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Fig. 6. Theoretical probability of escape for a random string of n symbols. Each curve plots a
different probability of executing a process-state-determined memory access (ps) for the PowerPC
uniform-length instruction set. Process memory occupancy is fixed at 0.05. The large triangles
are the measured data points for the given memory occupancy (data taken from Figure 3 for the
PowerPC and memory density q = 0.05), and the dotted lines are the predicted probabilities of
escape.

6. RELATED WORK

Our randomization technique is an example of automated diversity, an idea that
has long been used in software engineering to improve fault tolerance [Avizienis
1995; Avizienis and Chen 1977; Randell 1975] and more recently has been
proposed as a method for improving security [Cohen 1993; Forrest et al. 1997;
Pu et al. 1996]. The RISE approach was introduced in Barrantes et al. [2003],
and an approach similar to RISE was proposed in Kc et al. [2003].

Many other approaches have been developed for protecting programs against
particular methods of code injection, including: static code analysis [Dor et al.
2003; Larochelle and Evans 2001; Wagner et al. 2000] and runtime checks,
using either static code transformations [Avijit et al. 2004; Baratloo et al. 2000;
Chiueh and Hsu 2001; Cowan et al. 1998, 2001; Etoh and Yoda 2000, 2001; Jones
and Kelly 1997; Lhee and Chapin 2002; Nebenzahl and Wool 2004; Prasad and
Chiueh 2003; Ruwase and Lam 2004; Tsai and Singh 2001; Vendicator 2000;
Xu et al. 2002], dynamic instrumentation [Baratloo et al. 2000; Kiriansky et al.
2002], or hybrid schemes [Jim et al. 2002; Necula et al. 2002]. In addition, some
methods focus on protecting an entire system rather than a particular program,
resulting in defense mechanisms at the operating system level and hardware
support [Milenković et al. 2004; PaX Team 2003; Xu et al. 2002]. Instruction-set
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randomization is also related to hardware code encryption methods explored
in Kuhn [1997] and those proposed for TCPA/TCG [TCPA 2004].

6.1 Automated Diversity

Diversity in software engineering is quite different from diversity for security.
In software engineering, the basic idea is to generate multiple independent
solutions to a problem (e.g., multiple versions of a software program) with the
hope that they will fail independently, thus greatly improving the chances that
some solution out of the collection will perform correctly in every circumstance.
The different solutions may or may not be produced manually, and the number
of solutions is typically quite small, around 10.

Diversity in security is introduced for a different reason. Here, the goal is to
reduce the risk of widely replicated attacks, by forcing the attacker to redesign
the attack each time it is applied. For example, in the case of a buffer overflow
attack, the goal is to force the attacker to rewrite the attack code for each new
computer that is attacked. Typically, the number of different diverse solutions
is very high, potentially equal to the total number of program copies for any
given program. Manual methods are thus infeasible, and the diversity must be
produced automatically.

Cowan et al. [2000] introduced a classification of diversity methods applied to
security (called “security adaptations”) which classifies diversifications based
on what is being adapted—either the interface or the implementation. Interface
diversity modifies code layout or access controls to interfaces, without changing
the underlying implementation to which the interface gives access. Implemen-
tation diversity, on the other hand, modifies the underlying implementation of
some portion of the system to make it resistant to attacks. RISE can be viewed
as a form of interface diversity at the machine code level.

In 1997, Forrest et al. presented a general view of the possibilities of diversity
for security [Forrest et al. 1997], introducing the idea of deliberately diversify-
ing data and code layouts. They used the example of randomly padding stack
frames to make exact return address locations less predictable, and thus more
difficult for an attacker to locate. Developers of buffer overflow attacks have
developed a variety of workarounds—such as “ramps” and “landing zones” of
no-ops and multiple return addresses. Automated diversity via random stack
padding coerces an attacker to use such techniques; it also requires larger
attack codes in proportion to the size range of random padding employed.

Other work in automated diversity for security has also experimented with
diversifying data layouts [Cohen 1993; Pu et al. 1996], as well as system
calls [Chew and Song 2002], and file systems [Cowan et al. 2000]. In addi-
tion, several projects address the code-injection threat model directly, and we
describe those projects briefly.

Chew and Song [2002] proposed a method that combines kernel and loader
modification on the system level with binary rewriting at the process level
to provide system call number randomization, random stack relocation, and
randomization of standard library calls. This work has not been completely
evaluated to our knowledge.
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Address space layout randomization (ASLR) [PaX Team 2003] and trans-
parent runtime randomization (TRR) [Xu et al. 2003] randomize the positions
of the stack, shared libraries, and heap. The main difference between the two
is the implementation level. ASLR is implemented in the kernel, while TRR
modifies the loader program. Consequently, TRR is more oriented to the end
user.

Bhatkar et al. [2003] describe a method that randomizes the addresses of
data structures internal to the process, in addition to the base address of the
main segments. Internal data and code blocks are permuted inside the seg-
ments and the guessing range is increased by introducing random gaps be-
tween objects. The current implementation instruments object files and ELF
binaries to carry out the required randomizations. No access to the source code
is necessary, but this makes the transformations extremely conservative. This
technique nicely complements that of RISE, and the two could be used together
to provide protection against both code injection and return-into-libc attacks
simultaneously.

PointGuard [Cowan et al. 2003] uses automated randomization of pointers
in the code and is implemented by instrumenting the intermediate code (AST
in GCC).

The automated diversity project that is closest to RISE is the system de-
scribed in Kc et al. [2003], which also randomizes machine code. There are
several interesting points of comparison with RISE, and we describe two of
them: (1) persystem (whole image) versus perprocess randomization; (2) Bochs
[Butler 2004] versus Valgrind as emulator. First, in the Kc et al. implemen-
tation, a single key is used to randomize the image, all the libraries, and any
applications that need to be accessed in the image. The system later boots from
this image. This has the advantage that in theory, kernel code could be random-
ized using their method although most code-injection attacks target application
code. A drawback of this approach lies in its key management. There is a single
key for all applications in the image, and the key cannot be changed during
the lifetime of the image. Key guessing is a real possibility in this situation,
because the attacker would be likely to know the cleartext of the image. How-
ever, the Kc et al. system is more compact because there is only one copy of
the libraries. On the other hand, if the key is guessed for any one application
or library, then all the rest are vulnerable. Second, the implementations differ
in their choice of emulator. Because Bochs is a pure interpreter it incurs a sig-
nificant performance penalty, while emulators such as Valgrind can potentially
achieve close-to-native efficiency through the use of optimized and cached code
fragments.

A randomization of the SQL language was proposed in Boyd and Keromytis
[2004]. This technique is essentially the same one used in the Perl random-
izer [Kc et al. 2003], with a random string added to query keywords. It is
implemented through a proxy application on the server side. In principle, there
could be one server proxy per database connection, thus allowing more key
diversity. The performance impact is minimal, although key capture is theoret-
ically possible in a networked environment.
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6.2 Other Defenses Against Code Injection

Other defenses against code injection (sometimes called “restriction methods”)
can be divided into methods at the program and at the system level. In turn,
approaches at the program level comprise static code analysis and runtime code
instrumentation or surveillance. System level solutions can be implemented in
the operating system or directly through hardware modifications. Of these, we
focus on the methods most relevant to RISE.

6.2.1 Program-Level Defenses Against Code Injection. Program-level ap-
proaches can be seen as defense-in-depth, beginning with suggestions for good
coding practices and/or use of type-safe languages, continuing with automated
analysis of source code, and finally reaching static or dynamic modification
of code to monitor the process progress and detect security violations. Com-
parative studies on program-level defenses against buffer overflows have been
presented by Fayolle and Glaume [2002], Wilander and Kamkar [2003], and
Simon [2001]. Several relevant defenses are briefly discussed below.

The StackGuard system [Cowan et al. 1998] modifies GCC to interpose a a
canary word before the return address, the value of which is checked before the
function returns. An attempt to overwrite the return address via linear stack
smashing will change the canary value and thus be detected.

StackShield [Vendicator 2000], RAD [Chiueh and Hsu 2001], install-
time vaccination [Nebenzahl and Wool 2004], and binary rewriting[Prasad and
Chiueh 2003] all use instrumentations to store a copy of the function return ad-
dress off the stack and check against it before returning to detect an overwrite.
Another variant, Propolice [Etoh and Yoda 2000, 2001] uses a combination of a
canary word and frame data relocation to avoid sensible data overwriting. Split
control and data stack [Xu et al. 2002] divides the stack in a control stack for
return addresses and a data stack for all other stack-allocated variables.

FormatGuard [Cowan et al. 2001] used the C preprocessor (CPP) to add
parameter-counting to printf-like C functions and defend programs against
format print vulnerabilities. This implementation was not comprehensive even
against this particular type of attacks.

A slightly different approach uses wrappers around standard library
functions, which have proven to be a continuous source of vulnerabilities.
Libsafe [Baratloo et al. 2000; Tsai and Singh 2001], TIED, and LibsafePlus
[Avijit et al. 2004], and the type-assisted bounds checker proposed by Lhee and
Chapin [2002] intercept library calls and attempt to ensure that their manip-
ulation of user memory is safe.

An additional group of techniques depends on runtime bounds checking
of memory objects, such as the Kelly and Jones bound checker [Jones and
Kelly 1997] and the recent C range error detector (CRED) [Ruwase and Lam
2004]. Their heuristics differ in the way of determining if a reference is still le-
gal. Both can generate false positives, although CRED is less computationally
expensive.

The common theme in all these techniques is that they are specific defenses,
targeting specific points of entry for the injected code (stack, buffers, format
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functions, and so on). Therefore, they cannot prevent an injection arriving from
a different source or an undiscovered vulnerability type. RISE, on the other
hand, is a generic defense that is independent of the method by which binary
code is injected.

There is also a collection of dynamic defense methods which do not require
access to the original sources or binaries. They operate directly on the process
in memory, either by inserting instrumentation as extra code (during the load
process or as a library) or by taking complete control as in the case of native-
to-native emulators.

Libverify [Baratloo et al. 2000] saves a copy of the return address to compare
at the function end, so it is a predecessor to install-time vaccination [Nebenzahl
and Wool 2004] and binary rewriting [Prasad and Chiueh 2003], with the differ-
ence that it is implemented as a library that performs the rewrite dynamically,
so the binaries on disk do not require modification.

Code shepherding [Kiriansky et al. 2002] is a comprehensive, policy-based
restriction defense implemented over a binary-to-binary optimizing emulator.
The policies concern client code control transfers that are intrinsically detected
during the interpretation process. Two of those types of policies are relevant to
the RISE approach.

Code origin policies grant differential access based on the source of the code.
When it is possible to establish if the instruction to be executed came from a
disk binary (modified or unmodified) or from dynamically generated code (orig-
inal or modified after generation), policy decisions can be made based on that
origin information. In our model, we are implicitly implementing a code origin
policy, in that only unmodified code from disk is allowed to execute. An advan-
tage of the RISE approach is that the origin check cannot be avoided—only
properly sourced code is mapped into the private instruction set so it executes
successfully. Currently, the only exception we have to the disk origin policy is
for the code deposited in the stack by signals. RISE inherits its signal manipu-
lation from Valgrind [Nethercote and Seward 2003]. More specifically, all client
signals are intercepted and treated as special cases. Code left on the stack is
executed separately from the regular client code fetch cycle so it is not affected
by the scrambling. This naturally resembles PaX’s special handling of signals,
where code left on the stack is separately emulated.

Also relevant are restricted control transfers in which a transfer is allowed
or disallowed according to its source, destination, and type. Although we use a
restricted version of this policy to allow signal code on the stack, in most other
cases we rely on the RISE language barrier to ensure that injected code will
fail.

6.2.2 System-Level Defenses Against Code Injection. System level restric-
tion techniques can be applied in the operating system, hardware, or both. We
briefly review some of the most important system-level defenses.

The nonexecutable stack and heap as implemented in the PAGEEXEC fea-
ture of PaX [PaX Team 2003] is hardware assisted. It divides allocation into
data and code TLBs and intercepts all page-fault handlers into the code TLB.
As with any hardware-assisted technique, it requires changes to the kernel.

ACM Transactions on Information and System Security, Vol. 8, No. 1, February 2005.

cameras
Text Box
83

cameras
Text Box



Randomized Instruction Set Emulation • 27

RISE is functionally similar to these techniques, sharing the ability to random-
ize ordinary executable files with no special compilation requirements. Our
approach differs, however, from nonexecutable stacks and heaps in important
ways. First, it does not rely on special hardware support (although RISE pays
a performance penalty for its hardware independence). Second, although a sys-
tem administrator can choose whether to disable certain PaX features on a
perprocess basis, RISE can be used by an end-user to protect user-level pro-
cesses without any modification to the overall system.

A third difference between PaX and RISE is in how they handle applications
that emit code dynamically. In PaX, the process-emitting code requires having
the PAGEEXEC feature disabled (at least), so the process remains vulnerable
to injected code. If such a process intended to use RISE, it could modify the
code-emitting procedures to use an interface provided by RISE, and derived
from Valgrind’s interface for Valgrind-aware applications. The interface uses a
validation scheme based on the original randomization of code from disk. In a
pure language randomization, a process-emitting dynamic code would have to
do so in the particular language being used at that moment. In our approxima-
tion, the process using the interface scrambles the new code before execution.
The interface, a RISE function, considers the fragment of code as a new library,
and randomizes it accordingly. In contrast to nonexecutable stack/heap, this
does not make the area where the new code is stored any more vulnerable, as
code injected in this area will still be expressed in nonrandomized code and will
not be able to execute except as random bytes.

Some other points of comparison between RISE and PaX include

(1) Resistance to return-into-libc: Both RISE and PaX PAGEEXEC features
are susceptible to return-into-libc attacks when implemented as an iso-
lated feature. RISE is vulnerable to return-into-libc attacks without an
internal data structure randomization, and data structure randomization
is vulnerable to injected code without the code randomization. Similarly,
as the PaX Team notes, LIBEEXEC is vulnerable to return-into-libc with-
out ASLR (automatic stack and library randomization), and ASLR is vul-
nerable to injected code without PAGEEXEC [PaX Team 2003]. In both
cases, the introduction of the data structure randomization (at each cor-
responding granularity level) makes return-into-libc attacks extremely
unlikely.

(2) Signal code on the stack: Both PaX and RISE support signal code on the
stack. They both treat it as a special case. RISE in particular is able to detect
signal code as it intercepts all signals directed to the emulated process and
examines the stack before passing control to the process.

(3) C trampolines: PaX detects trampolines by their specific code pattern and
executes them by emulation. The current RISE implementation does not
support this, although it would not be difficult to add it.

StackGhost [Frantzen and Shuey 2001] is a hardware-assisted defense im-
plemented in OpenBSD for the Sparc architecture. The return address of func-
tions is stored in registers instead of the stack, and for a large number of nested
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calls StackGhost protects the overflowed return addresses through write pro-
tection or encryption.

Milenković et al. [2004] propose an alternative architecture where linear
blocks of instructions are signed on the last basic block (equivalent to a line
of cache). The signatures are calculated at compilation time and loaded with
the process into a protected architectural structure. Static libraries are com-
piled into a single executable with a program, and dynamic libraries have their
own signature file loaded when the library is loaded. Programs are stored un-
modified, but their signature files should be stored with strong cryptographic
protection. Given that the signatures are calculated once, at compile time, if
the signature files are broken, the program is vulnerable.

Xu et al. [2002] propose using a secure return address stack (SRAS) that
uses the redundant copy of the return address maintained by the processor’s
fetch mechanism to validate the return address on the stack.

6.3 Hardware Encryption

Because RISE uses runtime code scrambling to improve security, it resem-
bles some hardware-based code encryption schemes. Hardware components to
allow decryption of code and/or data on-the-fly have been proposed since the
late 1970s [Best 1979, 1980] and implemented as microcontrollers for custom
systems (for example, the DS5002FP microcontroller [Dallas Semiconductor
1999]). The two main objectives of these cryptoprocessors are to protect code
from piracy and data from in-chip eavesdropping. An early proposal for the use
of hardware encryption in general-purpose systems was presented by Kuhn
[1997] for a very high threat level where encryption and decryption were per-
formed at the level of cache lines. This proposal adhered to the model of protect-
ing licensed software from users, and not users from intruders, so there was no
analysis of shared libraries or how to encrypt (if desired) existing open appli-
cations. A more extensive proposal was included as part of TCPA/TCG [TCPA
2004]. Although the published TCPA/TCG specifications provide for encrypted
code in memory, which is decrypted on the fly, TCPA/TCG is designed as a
much larger authentication and verification scheme and has raised controver-
sies about digital rights management (DRM) and end-users’ losing control of
their systems [Anderson 2003; Arbaugh 2002]. RISE contains none of the ma-
chinery found in TCPA/TCG for supporting DRM. On the contrary, RISE is
designed to maintain control locally to protect the user from injected code.

7. DISCUSSION

The preceding sections describe a prototype implementation of the RISE ap-
proach and evaluate its effectiveness at disrupting attacks. In this section, we
address some larger questions about RISE.

7.1 Performance Issues

Although Valgrind has some limitations, discussed in Section 2, we are opti-
mistic that improved designs and implementations of “randomized machines”
would improve performance and reduce resource requirements, potentially
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expanding the range of attacks the approach can mitigate. We have also ob-
served that even in its current version, the performance RISE offers could be
acceptable if the processes are I/O bound and/or use the network extensively.

In the current implementation, RISE safety is somewhat limited by the dense
packing of legal IA32 instructions in the space of all possible byte patterns. A
random scrambling of bits is likely to produce a different legal instruction.
Doubling the size of the instruction encoding would enormously reduce the risk
of a processor’s successfully executing a long enough sequence of unscrambled
instructions to do damage. Although our preliminary analysis shows that this
risk is low even with the current implementation, we believe that emerging soft-
hardware architectures such as Crusoe [Klaiber 2000] will make it possible to
reduce the risk even further.

7.2 Is RISE Secure?

A valid concern when evaluating RISE’s security is its susceptibility to key
discovery, as an attacker with the appropriate scrambling information could
inject scrambled code that will be accepted by the emulator. We believe that
RISE is highly resistant to this class of attack.

RISE is resilient against brute force attacks because the attacker’s work
is exponential in the shortest code sequence that will make an externally de-
tectable difference if it is unscrambled properly. We can be optimistic because
most IA32 attack codes are at least dozens of bytes long, but if a software flaw
existed that was exploitable with, say, a single 1-byte opcode, then RISE would
be vulnerable, although the process of guessing even a 1-byte representation
would cause system crashes easily detectable by an administrator.

An alternative path for an attacker is to try to inject arbitrary address ranges
of the process into the network, and recover the key from the downloaded
information. The download could be part of the key itself (stored in the pro-
cess address space), scrambled code, or unscrambled data. Unscrambled data
does not give the attacker any information about the key. Even if the attacker
could obtain scrambled code or pieces of the key (they are equivalent because we
can assume that the attacker has knowledge of the program binary), using the
stolen key piece might not be feasible. If the key is created eagerly, with a key for
every possible address in the program, past or future, then the attacker would
still need to know where the attack code is going to be written in process space
to be able to use that information. However, in our implementation, where keys
are created lazily for code loaded from disk, the key for the addresses targeted
by the attack might not exist, and therefore might not be discoverable. The
keys that do exist are for addresses that are usually not used in code injection
attacks because they are write protected. In summary, it would be extremely
difficult to discover or use a particular encoding during the lifetime of a process.

Another potential vulnerability is RISE itself. We believe that RISE would
be difficult to attack for several reasons. First, we are using a network-based
threat model (attack code arrives over a network) and RISE does not perform
network reads. In fact it does not read any input at all after processing the run
arguments. Injecting an attack through a flawed RISE read is thus impossible.
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Second, if an attack arises inside a vulnerable application and the attacker
is aware that the application is being run under RISE, the vulnerable points
are the code cache and RISE’s stack, as an attacker could deposit code and
wait until RISE proceeds to execute something from these locations. Although
RISE’s code is not randomized because it has to run natively, the entire area
is write protected, so it is not a candidate for injection. The cache is read-only
during the time that code blocks are executed, which is precisely when this
hypothetical attack would be launched, so injecting into the cache is infeasible.

Another possibility is a jump-into-RISE attack. We consider three ways in
which this might happen:3

(1) The injected address of RISE code is in the client execution path cache.
(2) The injected address of RISE code is in the execution path of RISE itself.
(3) The injected address of RISE code is in a code fragment in the cache.

In case 1, the code from RISE will be interpreted. However, RISE only al-
lows certain self-functions to be called from client code, so everything else will
fail. Even for those limited cases, RISE checks the call origin, disallowing any
attempt to modify its own structures.

For case 2, the attacker would need to inject the address into a RISE data
area in RISE’s stack or in an executable area. The executable area is covered
by case 3. For RISE’s data and stack areas we have introduced additional ran-
domizations. The most immediate threat is the stack, so we randomize its start
address. For other data structures, the location could be randomized using the
techniques proposed in Bhatkar et al. [2003], although this is unimplemented
in the current prototype. Such a randomization would make it difficult for the
attacker to guess its location correctly. An alternative, although much more
expensive, solution would be to monitor all writes and disallow modifications
from client code and certain emulator areas.

It is worth noting that this form of attack (targeting emulator data struc-
tures) would require executing several commands without executing a single
machine language instruction. Although such attacks are theoretically possi-
ble via chained system calls with correct arguments, and simple (local) attacks
have been shown to work [Nergal 2001], these are not a common technique
[Wilander and Kamkar 2003]. In the next version of RISE, we plan to include
full data structure address randomization, which would make these rare at-
tacks extremely difficult to execute.

Case 3 is not easily achieved because fragments are write protected. How-
ever, an attacker could conceivably execute an mprotect call to change writing
rights and then write the correct address. In such a case, the attack would exe-
cute. This is a threat for applications running over emulators, as it undermines
all other security policies [Kiriansky et al. 2002]. In the current RISE imple-
mentation, we borrow the solution used in Kiriansky et al. [2002], monitoring
all calls to the mprotect system call by checking their source and destination
and not allowing executions that violate the protection policy.

3We rely on the fact that RISE itself does not receive any external input once it is running.

ACM Transactions on Information and System Security, Vol. 8, No. 1, February 2005.

cameras
Text Box
87

cameras
Text Box



Randomized Instruction Set Emulation • 31

7.3 Code/Data Boundaries

An essential requirement for using RISE for improving security is that the dis-
tinction between code and data must be carefully maintained. The discovery
that code and data can be systematically interchanged was a key advance in
early computer design, and this dual interpretation of bits as both numbers
and commands is inherent to programmable computing. However, all that flex-
ibility and power turn into security risks if we cannot control how and when
data become interpreted as code. Code-injection attacks provide a compelling
example, as the easiest way to inject code into a binary is by disguising it as
data, for example, as inputs to functions in a victim program.

Fortunately, code and data are typically used in very different ways, so
advances in computer architecture intended solely to improve performance,
such as separate instruction caches and data caches, also have helped to en-
force good hygiene in distinguishing machine code from data, helping make
the RISE approach feasible. At the same time, of course, the rise of mobile
code, such as Javascript in web pages and macros embedded in word pro-
cessing documents, tends to blur the code/data distinction and create new
risks.

7.4 Generality

Although our paper illustrates the idea of randomizing instruction sets at the
machine-code level, the basic concept could be applied wherever it is possible
to (1) distinguish code from data, (2) identify all sources of trusted code, and
(3) introduce hidden diversity into all and only the trusted code. A RISE for
protecting printf format strings, for example, might rely on compile-time de-
tection of legitimate format strings, which might either be randomized upon
detection, or flagged by the compiler for randomization sometime closer to
runtime. Certainly, it is essential that a running program interact with ex-
ternal information, at some point, or no externally useful computation can
be performed. However, the recent SQL attacks illustrate the increasing dan-
ger of expressing running programs in externally known languages [Harper
2002]. Randomized instruction set emulators are one step toward reducing that
risk.

An attraction of RISE, compared to an approach such as code shepherd-
ing, is that injected code is stopped by an inherent property of the system,
without requiring any explicit or manually defined checks before execu-
tion. Although divorcing policy from mechanism (as in code shepherding)
is a valid design principle in general, complex user-specified policies are
more error prone than simple mechanisms that hard-code a well-understood
policy.

8. CONCLUSIONS

In this paper we introduced the concept of a randomized instruction set em-
ulator as a defense against binary code injection attacks. We demonstrated
the feasibility and utility of this concept with a proof-of-concept implemen-
tation based on Valgrind. Our implementation successfully scrambles binary
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code at load time, unscrambles it instruction-by-instruction during instruction
fetch, and executes the unscrambled code correctly. The implementation was
successfully tested on several code-injection attacks, some real and some syn-
thesized, which exhibit common injection techniques.

We also addressed the question of RISE safety—how likely are random byte
sequences to cause damage if executed. We addressed this question both ex-
perimentally and theoretically and conclude that there is an extremely low
probability that executing a sequence of random bytes would cause real dam-
age (say by executing a system call). However, there is a slight probability that
such a random sequence might escape into an infinite loop or valid code. This
risk is much lower for the Power PC instruction set than it is for the IA32,
due to the density of the IA32 instruction set. We thus conclude that a RISE
approach would be even more successful on the Power PC architecture than it
is on the IA32.

As the complexity of systems grows, and 100% provable overall system
security seems an ever more distant goal, the principle of diversity suggests
that having a variety of defensive techniques based on different mechanisms
with different properties stands to provide increased robustness, even if the
techniques address partially or completely overlapping threats. Exploiting the
idea that it is hard to get much done when you do not know the language, RISE
is another technique in the defender’s arsenal against binary code injection
attacks.

APPENDIX

A. ENCODING OF THE IA32 MARKOV CHAIN MODEL

In this appendix, we discuss the details for the construction of the Markov chain
representing the state of the processor as each byte is interpreted.

If X t = j is the event of being in state j at time t (in our case, at the reading
of byte t), the transition probability P{X t+1 = j |X t = i} is denoted pij and is
the probability that the system will be in state j at byte t + 1 if it is in state i
for byte t.

For example, when the random sequence starts (in state start), there is some
probability p that the first byte will correspond to an existing 1-byte opcode that
requires an additional byte to specify memory addressing (the Mod-Reg-R/M
(MRM) byte). Consequently, we create a transition from start to mrm with some
probability p: pstart,mrm = p. p is the number of instructions with one opcode
that require the MRM byte, divided by the total number of possibilities for the
first byte (256). In IA32 there are 41 such instructions, so pstart,mrm = 41

256 .
If the byte corresponds to the first byte of a 2-byte instruction, we transition

to an intermediate state that represents the second byte of that family of in-
structions, and so on. There are two exit states: crash and escape. The crash
state is reached when an illegal byte is read, or there is an attempt to use
invalid memory, for an operation or a jump. The second exit state, escape, is
reached probabilistically when a legitimate jump is executed. This is related to
the escape event.
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Because of the complexity of the IA32 instruction set, we simplified in some
places. As far as possible, we adhered to the worst-case principle, in which
we overestimated the bad outcomes when uncertainty existed (e.g., finding a
legal instruction, executing a privileged instruction, or jumping). The next few
paragraphs describe these simplifications.

We made two simplifications related to instructions. The IA32 has in-
struction modifiers called prefixes that can generate complicated behaviors
when used with the rest of the instruction set. We simplified by treating
all of them as independent instructions of length 1 byte, with no effect
on the following instructions. This choice overestimates the probability of
executing those instructions, as some combinations of prefixes are not al-
lowed, others significantly restrict the kind of instructions that can follow, or
make the addresses or operands smaller. In the case of regular instructions
that require longer low-probability pathways, we combined them into simi-
lar patterns. Privileged instructions are assumed to fail with probability of
1.0 because we assume that the RISE-protected process is running at user
level.

In the case of conditional branches, we assess the probability that the
branch will be taken, using the combination of flag bits required for the
particular instruction. For example, if the branch requires that two flags
have a given value (0 or 1), the probability of taking the branch is set to
0.25 . A nontaken branch transitions to the start state as a linear instruc-
tion. All conditional branches in IA32 use relative (to the current Instruc-
tion Pointer), 8- or 16-bit displacements. Given that the attack had to be in
an executable area to start with, this means that it is likely that the jump
will execute. Consequently, for conditional branches we transition to escape
with probability 1. This is consistent with the observed behavior of successful
jumps.

A.1 Definition of Loose and Strict Criteria of Escape

Given that the definition of escape is relative to the position of the instruction in
the exploit area, it is necessary to arbitrarily decide if to classify an incomplete
interpretation as an escape or as a crash. This is the origin of the loose and
strict criteria.

In terms of the Markov chain, the loose and strict classifications are defined
as follows:

(1) Loose escape: Starting from the start state, reach any state except crash, in
m transitions (reading m bytes).

(2) Strict escape: Reach the escape state in m or fewer transitions from the start
state (in m bytes).

If T is the transition matrix representing the IA32 Markov chain, then to
find the probability of escape from a sequence of m random bytes, we need to
determine if the chain is in state start or escape (the strict criterion) or not in
state crash (the loose criterion) after advancing m bytes. These probabilities
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Fig. 7. Partition of symbols into disjoint sets based on the possible outcome paths of interest in
the decoding and execution of a symbol. Each path defines a set. Each shaded leaf represents one
(disjoint) set, with the set name noted in the box.

are given by T m(start,start) + T m(start,escape) and 1 − T m(start,crash), re-
spectively, where T (i, j ) is the probability of a transition from state i to state
j .

B. ENCODING OF A UNIFORM-LENGTH INSTRUCTION SET

This appendix contains intermediate derivations for the uniform-length in-
struction set model.

B.1 Partition Graph

Figure 7 illustrates the partition of the symbols into disjoint sets using the
execution model given in Section 4.1.

B.2 Encoding Conventions

The set of branches that are relative to the current instruction pointer with a
small offset (defined as being less or equal than 2b−1) is separated from the rest
of the branches, because their likelihood of execution is very high. In the anal-
ysis we set their execution probability to 1, which is consistent with observed
behavior.

A fraction of the conditional branches are artificially separated into LMI and
LMP from their original BMI and BMP sets. This fraction corresponds to the
probability of taking the branch, which we assume is 0.5. This is similar to the
IA32 case, where we assumed that a non-branch-taking instruction could be
treated as a linear instruction.

To determine the probability that a symbol falls into one of the partitions, we
need to enumerate all symbols in the instruction set. For accounting purposes,
when parts of addresses and/or immediate (constant) operands are encoded in-
side the instruction, each possible instantiation of these data fields is counted
as a different instruction. For example, if the instruction “XYZ” has 2 bits spec-
ifying one of four registers, we count four different XYZ instructions, one for
each register encoding.

ACM Transactions on Information and System Security, Vol. 8, No. 1, February 2005.

cameras
Text Box
91

cameras
Text Box



Randomized Instruction Set Emulation • 35

B.3 Derivation of the Probability of a Successful Branch (Escape) Out of a
Sequence of n Random Bytes

P (X �
n) = ∑

i=1,...,n
P (X i) + P (L)n

= ∑
i=1,...,n

P (L)i P (E) + P (L)n

=
(

P (E)
∑

i=1,...,n
P (L)i

)
+ P (L)n

= P (E)
1 − P (L)n+1

1 − P (L)
+ P (L)n.

(1)

B.4 Derivation of the Lower Limit for the Probability of Escape

lim
n→∞ P (X �

n) = lim
n→∞ P (E)

1 − P (L)n+1

1 − P (L)
+ P (L)n

= P (E)
1 − P (L)

.

(2)
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